Skip to main content
Log in

The Mathematical Basis for Physical Laws

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Laws of mechanics, quantum mechanics, electromagnetism, gravitation and relativity are derived as “related mathematical identities” based solely on the existence of a joint probability distribution for the position and velocity of a particle moving on a Riemannian manifold. This probability formalism is necessary because continuous variables are not precisely observable. These demonstrations explain why these laws must have the forms previously discovered through experiment and empirical deduction. Indeed, the very existence of electric, magnetic and gravitational fields is predicted by these purely mathematical constructions. Furthermore these constructions incorporate gravitation into special relativity theory and provide corrected definitions for coordinate time and proper time. These constructions then provide new insight into the relationship between manifold geometry and gravitation and present an alternative to Einstein’s general relativity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. E. Collins, The Continuum and Wave Mechanics, Ph.D. dissertation, Texas A&M University (1954)

  2. R. R. Dedekind, Essays on the Theory of Numbers trans. by W. W. Beman (1901) (Open Court, La Salle, Illinois, 1924).

  3. L. Auslander R. E. Mackenzie (1963) Introduction to Differentiable Manifolds McGraw-Hill New York

    Google Scholar 

  4. W. Feller (1950) An Introduction to Probability Theory and Its Applications Wiley New York

    Google Scholar 

  5. P. R. Halmos (1950) Measure Theory Van Nostrand Princeton, NJ

    Google Scholar 

  6. G. DeRham (1955) Variétés Differentiables, Formes, Courants, Formes Harmonique Hermann Paris

    Google Scholar 

  7. W. V. D. Hodge (1963) The Theory and Application of Harmonic Integrals Cambridge University Press London

    Google Scholar 

  8. A. O. Barut (1964) Electrodynamics and Classical Theory of Fields and Particles McMillan New York

    Google Scholar 

  9. R. E. Collins, “The probabilistic basis for quantum mechanics,” submitted to Found. Phys. April 2005.

  10. E. Madelung (1926) Z. Phys. 40 322

    Google Scholar 

  11. D. Bohm, Phys. Rev. 85, 166–178 (1952); Phys. Rev. 85, 180–193 (1952)

  12. P. R. Holland (1993) The Quantum Theory of Motion Cambridge University Press New York

    Google Scholar 

  13. E. C. G. Stückelberg (1942) Helv. Phys. Acta 14 23

    Google Scholar 

  14. J. R. Fanchi (1993) Parameterized Relativistic Quantum Theory Kluwer Academic Dordrecht

    Google Scholar 

  15. J. D. Jackson (1975) Classical Electrodynamics EditionNumber2 Wiley New York

    Google Scholar 

  16. J. Mathews R. L. Walker (1970) Mathematical Methods of Physics EditionNumber2 Benjamin Menlo Park, CA

    Google Scholar 

  17. A. Pais (1982) Subtle is the Lord, The Science and Life of Albert Einstein Oxford University Press New York

    Google Scholar 

  18. P. G. Bergmann (1976) Introduction to the Theory of Relativity Dover New York

    Google Scholar 

  19. R. Adler M. Bazin M. Shiffer (1975) Introduction to General Relativity McGraw-Hill New York

    Google Scholar 

  20. R. V. Pound G. A. Rebka (1959) Phys. Rev. Lett. 3 439–441 Occurrence Handle10.1103/PhysRevLett.3.439 Occurrence Handle1:CAS:528:DyaF3cXis12mtA%3D%3D

    Article  CAS  Google Scholar 

  21. R. V. Pound J. L. Snider (1964) Phys. Rev. Lett. 13 539–540 Occurrence Handle10.1103/PhysRevLett.13.539 Occurrence Handle1:CAS:528:DyaF2MXhtlSlug%3D%3D

    Article  CAS  Google Scholar 

  22. A. Einstein, Ann. Phys. (Leipzig) 35, (1911); also in The Principle of Relativity (Dover, New York, 1952).

  23. D. E. Lebach et al. (1995) Phys. Rev. Lett. 75 1439 Occurrence Handle10.1103/PhysRevLett.75.1439 Occurrence Handle1:CAS:528:DyaK2MXns1Smu7s%3D Occurrence Handle10060299

    Article  CAS  PubMed  Google Scholar 

  24. A. Einstein Ann. Phys. (Leipzig) 49, (1916); also in The Principle of Relativity (Dover, New York, 1952).

  25. A. Einstein (1950) The Meaning of Relativity Princeton University Press Princeton, NJ

    Google Scholar 

  26. K. Schwartzschild, Sitzber. Preuss. Akad. Wiss. (Berlin, 1916), pp. 189–196.

  27. G. Birkhoff (1923) Relativity and Modern Physics Cambridge University Press Mass

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Eugene Collins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, R.E. The Mathematical Basis for Physical Laws. Found Phys 35, 743–785 (2005). https://doi.org/10.1007/s10701-005-4564-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-4564-7

Keywords

Navigation