Skip to main content
Log in

The arrow of electromagnetic time and the generalized absorber theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The problem of the direction of electromagnetic time, i.e., the complete dominance of retarded electromagnetic radiation over advanced radiation in the universe, is considered in the context of a generalized form of the Wheeler-Feynman absorber theory in an open expanding universe with a singularity atT=0. It is shown that the application of a four-vector reflection boundary condition at the singularity leads to the observed dominance of retarded radiation; it also clarifies the role of advanced and retarded waves in the emission of very weakly absorbed radiation such as neutrinos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. A. Wheeler and R. P. Feynman,Rev. Mod. Phys. 17, 157 (1945);Rev. Mod. Phys. 21, 425 (1949); see also the review by D. T. Pegg,Rep. Prog. Phys. 38, 1339 (1975).

    Google Scholar 

  2. H. Tetrode,Z. Phys. 10, 317 (1922).

    Google Scholar 

  3. A. D. Fokker,Z. Phys. 58, 386 (1929).

    Google Scholar 

  4. P. A. M. Dirac,Proc. Roy. Soc. (London) A267, 148 (1938).

    Google Scholar 

  5. F. Hoyle and J. V. Narlikar,Proc. Roy. Soc. A277, 1 (1964);Action at a Distance in Physics and Cosmology (W. H. Freeman and Co., San Francisco, 1974).

    Google Scholar 

  6. P. C. W. Davies,Proc. Cambridge Philos. Soc. 68, 751 (1970);J. Phys. A4, 836 (1971); andJ. Phys. A5, 1025 (1972).

    Google Scholar 

  7. J. G. Cramer,Phys. Rev. D22, 362 (1980).

    Google Scholar 

  8. A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).

    Google Scholar 

  9. J. E. Hogarth,Proc. Roy. Soc. A267, 365 (1962).

    Google Scholar 

  10. P. E. Roe,Mon. Not. R. Astron. Soc. 144, 219 (1969).

    Google Scholar 

  11. R. Burman,Observatory 90, 240 (1971).

    Google Scholar 

  12. R. Burman,Observatory 91, 141 (1971).

    Google Scholar 

  13. P. C. W. Davies,J. Phys. A5, 1722 (1972).

    Google Scholar 

  14. J. V. Narlikar,Proc. Roy. Soc. A270, 553 (1962).

    Google Scholar 

  15. Paul L. Csonka,Phys. Rev. 180, 180 (1969).

    Google Scholar 

  16. R. Burman,Observatory 92, 128 (1972).

    Google Scholar 

  17. R. Burman,Observatory 92, 131 (1972).

    Google Scholar 

  18. R. Burman,Phys. Lett. 53, 17 (1975).

    Google Scholar 

  19. K. E. Bergkvist, inTopical Conference on Weak Interactions (CERN, Geneva, 1962), p. 91.

    Google Scholar 

  20. E. M. Henley (private communication).

  21. T. Gold, inProceedings of the 11th Solvay Conference on Physics, Part 1 (Stoops, Brussels, 1958), p. 81.

    Google Scholar 

  22. P. C. W. Davies,The Physics of Time Asymmetry (University of California Press, Berkeley, 1977), Chapter 5.

    Google Scholar 

  23. R. B. Partridge,Nature 244, 263 (1973).

    Google Scholar 

  24. J. Schmidt and R. Newman,Bull. Am. Phys. Soc. 25, 581 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cramer, J.G. The arrow of electromagnetic time and the generalized absorber theory. Found Phys 13, 887–902 (1983). https://doi.org/10.1007/BF00732064

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732064

Keywords

Navigation