Skip to main content
Log in

Fabrication of Quantum Photonic Integrated Circuits by Means of Femtosecond Laser Pulses

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Femtosecond laser microfabrication has emerged in the last decade as a powerful technique for direct inscription of low loss optical waveguides in practically any transparent dielectric substrate, showing outstanding versatility. Prototyping of new devices is made rapid, cheap and easy: optical circuits are written directly buried in the substrate, using the laser beam as an optical pen, without any need of costly masks as required by conventional photolithography. Many proof-of-principle demonstrations of integrated optics can be obtained, including splitters, directional couplers, and Mach–Zehnder interferometers. Actually, the road towards applications has just been opened, and the unique capabilities of femtosecond laser micromachining will enable achievements inconceivable with other technologies. In this work, the femtosecond laser fabrication technique is discussed, together with its application to the realization of integrated photonic quantum circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Polarization dependent transmissivity values, for the directional couplers in our fabricated CNOT gate, were measured to be, respectively: \(T_H < 1\,\%\) , \(T_V = (64 \pm 1)\,\%\) for PPDC\(_1\); \(T_H = (43 \pm 1)\,\%\), \(T_V = (98 \pm 1)\,\%\) for PPDC\(_2\); \(T_H = (27 \pm 1)\,\%\), \(T_V = (93 \pm 1)\,\%\) for PPDC\(_3\).

References

  1. Politi, A., Cryan, M.J., Rarity, J.G., Yu, S.Y., OBrien, J.L.: Silica-on-silicon waveguide quantum circuits. Science 320, 646 (2008)

    Article  ADS  Google Scholar 

  2. Nolte, S., Will, M., Burghoff, J., Tünnermann, A.: Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics. Appl. Phys. A 77, 109–111 (2003)

    Article  ADS  Google Scholar 

  3. Owens, J.O., Broome, M.A., Biggerstaff, D.N., Goggin, M.E., Fedrizzi, A., Linjordet, T., Ams, M., Marshall, G.D., Twamley, J., Withford, M.J., White, A.G.: Two-photon quantum walks in an elliptical direct-write waveguide array. New J. Phys. 13, 075003 (2011)

    Article  ADS  Google Scholar 

  4. Owens, J.O., Broome, M.A., Biggerstaff, D.N., Goggin, M.E., Fedrizzi, A., Linjordet, T., Ams, M., Marshall, G.D., Twamley, J., Withford, M.J., White, A.G.: Two-photon quantum walks in an elliptical direct-write waveguide array. New J. Phys. 13, 075003 (2011)

    Article  ADS  Google Scholar 

  5. Davis, K.M., Miura, K., Sugimoto, N., Hirao, K.: Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729 (1996)

    Article  ADS  Google Scholar 

  6. Della Valle, G., Osellame, R., Laporta, P.: Micromachining of photonic devices by femtosecond laser pulses. J. Opt. A 11, 013001 (2009)

    Article  ADS  Google Scholar 

  7. Gattass, R.R., Mazur, E.: Femtosecond laser micromachining in transparent materials. Nat. Photon 2, 219 (2008)

    Article  ADS  Google Scholar 

  8. Stuart, B.C., Feit, M.D., Herman, S., Rubenchik, A.M., Shore, B.W., Perry, M.D.: Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53, 1749 (1996)

    Article  ADS  Google Scholar 

  9. Ponader, C.W., Schroeder, J.F., Streltsov, A.M.: Origin of the refractive-index increase in laser-written waveguides in glasses. J. Appl. Phys. 103, 063516 (2008)

    Article  ADS  Google Scholar 

  10. Ams, M., Marshall, G.D., Dekker, P., Dubov, M., Mezentsev, V.K., Bennion, I., Withford, M.J.: Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics. IEEE J. Sel. Top. Quantum Electron. 14, 1370 (2008)

    Article  Google Scholar 

  11. Bricchi, E., Klappauf, B.G., Kazansky, P.G.: Form birefringence and negative index change created by femtosecond direct writing in transparent materials. Opt. Lett. 29, 119 (2004)

    Article  ADS  Google Scholar 

  12. Cheng, G., Mishchik, K., Mauclair, C., Audouard, E., Stoian, R.: Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass. Appl. Phys. Lett. 80, 219 (2009)

    Google Scholar 

  13. Marcinkeviius, A., Juodkazis, S., Watanabe, M., Miwa, M., Matsuo, S., Misawa, H., Nishii, J.: Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt. Lett. 26, 277 (2001)

    Article  ADS  Google Scholar 

  14. Eaton, S., Zhang, H., Herman, P., Yoshino, F., Shah, L., Bovatsek, J., Arai, A.: Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 13, 4708 (2005)

    Article  ADS  Google Scholar 

  15. Schaffer, C.B., Brodeur, A., Garca, J.F., Mazur, E.: Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt. Lett. 26, 93 (2001)

    Article  ADS  Google Scholar 

  16. Eaton, S.M., Zhang, H., Ng, M.L., Li, J., Chen, W.-J., Ho, S., Herman, P.R.: Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides. Opt. Express 16, 9443 (2008)

    Article  ADS  Google Scholar 

  17. Cerullo, G., Osellame, R., Taccheo, S., Marangoni, M., Polli, D., Ramponi, R., Laporta, P., De Silvestri, S.: Femtosecond micromachining of symmetric waveguides at 1.5 m by astigmatic beam focusing. Opt. Lett. 27, 1938 (2002)

    Article  ADS  Google Scholar 

  18. Killi, A., Steinmann, A., Dorring, J., Morgner, U., Lederer, M.J., Kopf, D., Fallnich, C.: High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator. Opt. Lett. 30, 1891 (2005)

    Article  ADS  Google Scholar 

  19. http://www.highq-us.com/en/products/regenerative-amplifiers/femtoregen-series/

  20. http://www.aerotech.com/product-catalog/industrysolutions/fiberglide-3d.aspx

  21. Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)

    Article  ADS  Google Scholar 

  22. Yariv, A.: Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron. 9, 919 (1973)

    Article  ADS  Google Scholar 

  23. Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R.: Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503 (2010)

    Article  ADS  Google Scholar 

  24. Kiesel, N., Schmid, C., Weber, U., Ursin, R., Weinfurter, H.: Linear optics controlled phase gate made simple. Phys. Rev. Lett. 95, 210505 (2005)

    Article  ADS  Google Scholar 

  25. Crespi, A., Ramponi, R., Osellame, R., Sansoni, L., Bongioanni, I., Sciarrino, F., Vallone, G., Mataloni, P.: Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Ramponi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crespi, A., Osellame, R., Sansoni, L. et al. Fabrication of Quantum Photonic Integrated Circuits by Means of Femtosecond Laser Pulses. Found Phys 44, 843–855 (2014). https://doi.org/10.1007/s10701-014-9800-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9800-6

Keywords

Navigation