Skip to main content
Log in

Models and methodologies in current theoretical high-energy physics

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

A case study of the development of quantum field theory and of S-matrix theory, from their inceptions to the present, is presented. The descriptions of science given by Kuhn and by Lakatos are compared and contrasted as they apply to this case study. The episodes of the developments of these theories are then considered as candidates for competing research programs in Lakatos' methodology of scientific research programs. Lakatos' scheme provides a reasonable overall description and a plausible assessment of the relative value of these two programs in terms of progressive and degenerating problem shifts. Also discussed are the roles of various types of models as they have been used in these areas of theoretical high-energy physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abers, E., Zachariasen, F., and Zemach, C. (1963), ‘Origin of Internal Symmetries,’ The Physical Review 132, 1831–1836.

    Google Scholar 

  • Abrams, G. S., et al. (1974), ‘Discovery of a Second Narrow Resonance in e +e Annihilation,’ Physical Review Letters 33, 1453–1455.

    Google Scholar 

  • Atkinson, D. (1968a), ‘A Proof of the Existence of Functions that Satisfy Exactly Both Crossing and Unitarity. I. Neutral Pion-Pion Scattering. No subtractions,’ Nuclear Physics B7, 375–408.

    Google Scholar 

  • Atkinson, D. (1968b), ‘A Proof of the Existence of Functions that Satisfy Exactly Both Crossing and Unitarity (II) Charged Pions. No Subtractions.’ Nuclear Physics B8, 377–390.

    Google Scholar 

  • Atkinson, D. (1969), ‘A Proof of the Existence of Functions that Satisfy Exactly Both Crossing and Unitarity (III). Subtractions,’ Nuclear Physics B13, 415–436.

    Google Scholar 

  • Atkinson, D. (1970), ‘A Proof of the Existence of Functions that Satisfy Exactly Both Crossing and Unitarity (IV). Nearly Constant Asymptotic Cross Sections,’ Nuclear Physics B23, 397–412.

    Google Scholar 

  • Aubert, J. J., et al. (1974), ‘Experimental Observation of a Heavy Particle J,’ Physical Review Letters 33, 1404–1406.

    Google Scholar 

  • Balázs, L. A. P. (1977), ‘Meson Spectrum in a Simple Planar Bootstrap Model,’ Physics Letters 71B, 216–218.

    Google Scholar 

  • Barber, D. P., et al. (1979), ‘Discovery of Three-Jet Events and a Test of Quantum Chromodynamics at PETRA,’ Physical Review Letters 43, 830–833.

    Google Scholar 

  • Barger, V., Leveille, J. P., Langacker, P., and Pakvasa, S. (1980), ‘Neutrino Oscillations of the Second Class’ (Stanford Linear Accelerator preprint: SLAC-PUB-2591; August 1980).

  • Bell, J. S. (1964), ‘On the Einstein Podolsky Rosen Paradox,’ Physics 1, 195–200.

    Google Scholar 

  • Bell, J. S., (1966), ‘On the Problem of Hidden Variables in Quantum Mechanics,’ Reviews of Modern Physics 38, 447–452.

    Google Scholar 

  • Bethe, H. A. (1947), ‘The Electromagnetic Shift of Energy Levels,’ The Physical Review 72, 339–341. [Also in Schwinger (1958).]

    Google Scholar 

  • Bethe, H. A., and de Hoffmann, F. (1956), Mesons and Fields Vol. II (Row, Peterson, and Co., Evanston) pp. 20–29.

    Google Scholar 

  • Blankenbecler, R., Coon, D. D., and Roy, S. M. (1967), ‘S-Matrix Approach to Internal Symmetries,’ The Physical Review 156, 1624–1636.

    Google Scholar 

  • Blankenbecler, R., Goldberger, M. L., Khuri, N. N., and Treiman, S. B. (1960), ‘Mandelstam Representation for Potential Scattering,’ Annals of Physics 10, 62–93.

    Google Scholar 

  • Bloch, F., and Nordsieck, A. (1937), ‘Note on the Radiation Field of the Electron,’ The Physical Review 52, 54–59. [Also in Schwinger (1958).]

    Google Scholar 

  • Bohr, N. (1913a), ‘On the Constitution of Atoms and Molecules,’ Philosophical Magazine 26, 1–25.

    Google Scholar 

  • Bohr, N. (1913b), ‘The Spectra of Helium and Hydrogen,’ Nature 92, 231–232.

    Google Scholar 

  • Bohr, N. (1918), ‘On the Quantum Theory of Line spectra,’ Kongelige Danske Videnskabernes Selskab Skrifter Naturvidenskabelig og Matematisk Afdeling, series 8 IV. 1: 1–118. [Part I is also in van der Waerden (1967), pp. 95–137.]

  • Bohr, N., Kramers, H. A., and Slater, J. C. (1924), ‘The Quantum Theory of Radiation,’ Philosophical Magazine 47, 785–802. [Also in van der Waerden (1967), pp. 159–176.]

    Google Scholar 

  • Bohr, N., and Rosenfeld, L. (1933), ‘Zur Frage der Messbarkeit der Electromagnetischen Feldgrössen,’ Kongelige Danske Videnskabernes Selskab, Matematisk-Fysiske Meddelelser 12 No. 8.

  • Born, M. (1924), ‘Über Quantenmechanik,’ Zeitschrift für Physik 26, 379–395. [Also appears as ‘Quantum Mechanics,’ in van der Waerden (1967), pp. 181–198.]

    Google Scholar 

  • Born, M. (1926a), ‘Zur Quantenmechanik der Stossvorgänge,’ Zeitschrift für Physik 37, 863–867.

    Google Scholar 

  • Born, M. (1926b), ‘Quantenmechanik der Stossvorgänge,’ Zeitschrift für Physik 38, 803–827.

    Google Scholar 

  • Born, M. (1926c), ‘Das Adiabatenprinzip in der Quantenmechanik,’ Zeitschrift für Physik 40, 167–192.

    Google Scholar 

  • Born, M. (1926d), ‘Physical Aspects in Quantum Mechanics,’ Nature 119, 354–357.

    Google Scholar 

  • Born, M., Heisenberg, W., and Jordan, P. (1926), ‘Zur Quantenmechanik II,’ Zeitschrift für Physik 35, 557–615. [Also appears as ‘On Quantum Mechanics II,’ in van der Waerden (1967), pp. 321–385.]

    Google Scholar 

  • Born, M., and Jordan, P. (1925), ‘Zur Quantenmechanik,’ Zeitschrift für Physik 34, 858–888. [Chapters 1–3 also appear as ‘On Quantum Mechanics’ in van der Waerdern (1967), pp. 277–306.]

    Google Scholar 

  • Bose, S. N. (1924), ‘Plancks Gesetz und Lichtquantenhypothese,’ Zeitschrift für Physik 26, 178–181. [This also appears in translation in the American Journal of Physics 44 (1976), 1056–1057.]

    Google Scholar 

  • Bromberg, J. (1976), ‘The Concept of Particle Creation Before and After Quantum Mechanics,’ Historical Studies in the Physical Sciences 7, (Princeton University Press, Princeton) pp. 161–191.

    Google Scholar 

  • Brown, H. R., and Redhead, M. L. G. (1981), ‘A Critique of the Disturbance Theory of Indeterminacy in Quantum Mechanics,’ Foundations of Physics 11, 1–20.

    Google Scholar 

  • Brown, L. M., and Feymann, R. P. (1952), ‘Radiative Corrections to Compton Scattering,’ The Physical Review 85, 231–244.

    Google Scholar 

  • Burgers, J. M. (1917), ‘Die adiabatischen Invarianten bedingt periodischer System,’ Annalen der Physik 52, 195–202.

    Google Scholar 

  • Capra, F. (1979), ‘Quark Physics Without Quarks: A Review of Recent Developments in S-Matrix Theory,’ American Journal of Physics 47, 11–23.

    Google Scholar 

  • Charap, J. M., and Fubini, S. (1959), ‘The Field Theoretic Definition of the Nuclear Potential-I,’ Il Nuovo Cimento 14, 540–559.

    Google Scholar 

  • Chew, G. F. (1961), S-Matrix Theory of Strong Interactions, W. A. Benjamin, New York.

    Google Scholar 

  • Chew, G. F. (1962), ‘S-Matrix Theory of Strong Interactions without Elementary Particles,’ Reviews of Modern Physics 34, 394–401.

    Google Scholar 

  • Chew, G. F. (1964), ‘Nuclear Democracy and Bootstrap Dynamics,’ in Jacob and Chew (1964; pp. 103–152).

    Google Scholar 

  • Chew, G. F. (1968), ‘S-Matrix Theory with Regge Poles,’ Proceedings of the Fourteenth Solvay Conference, 1967, Interscience Publishers, New York, pp. 65–85.

    Google Scholar 

  • Chew, G. F. (1970), ‘Hadron Bootstrap: Triumph or Frustration?’ Physics Today 23 No. 10, 23–28.

    Google Scholar 

  • Chew, G. F. (1971), ‘Hadron Bootstrap Hypothesis,’ The Physical Review 4D, 2330–2335.

    Google Scholar 

  • Chew, G. F. (1979a), ‘Bootstrapping Quarks and Gluons,’ Proceedings of the XIVth Annual Recontre de Moriond (available as Lawrence Berkeley Laboratory Report 9015, April, 1979).

  • Chew, G. F. (1979b), ‘Hadron-Disc Spectrum of the Spherical S-Matrix,’ VIIIth International Winter Meeting on Fundamental Physics, Segovia (1979) (published as CERN preprint TH. 2671).

  • Chew, G. F., Finkelstein, J., Sursock, J. P., and Weissmann, G. (1978), ‘Ordered Hadron S-Matrix,’ Nuclear Physics B136, 493–510.

    Google Scholar 

  • Chew, G. F., and Frautschi, S. C. (1961), ‘Principle of Equivalence for all Strongly Interacting Particles Within the S-Matrix Framework,’ Physical Review Letters 7, 394–397.

    Google Scholar 

  • Chew, G. F., and Frautschi, S. C. (1962), ‘Regge Trajectories and the Principle of Maximum Strength for Strong Interactions,’ Physical Review Letters 8, 41–44.

    Google Scholar 

  • Chew, G. F., and Low, F. E. (1956), ‘Effective-Range Approach to the Low-Energy p-Wave Pion-Nucleon Interaction,’ The Physical Review 101, 1570–1579.

    Google Scholar 

  • Chew, G. F., and Rosenzweig, C. (1978), ‘Dual Topological Unitarization: An Ordered Approach to Hadron Theory,’ Physics Reports 41C, 263–327.

    Google Scholar 

  • Clauser, J. F., and Shimony, A. (1978), ‘Bell's Theorem: Experimental Tests and Implications,’ Reports on Progress in Physics 41, 1881–1927.

    Google Scholar 

  • Cohen, R. S., et al. (eds.) (1976), Boston Studies in the Philosophy of Science, Vol. 39, D. Reidel, Dordrecht.

    Google Scholar 

  • Collins, P. D. B., and Squires, E. J. (1968), Regge Poles in Particle Physics, Springer Tracts in Modern Physics, Vol. 45, Springer-Verlag, Berlin.

    Google Scholar 

  • Compton, A. H. (1923), ‘A Quantum Theory of the Scattering of X-Rays by Light Elements,’ The Physical Review 21, 483–502.

    Google Scholar 

  • Cool, R. L., and Marshak, R. E. (eds.) (1968), Advances in Particle Physics, Vol. 2, Interscience, New York.

    Google Scholar 

  • Coster, J., and Stapp, H. P. (1970), ‘Physical-Region Discontinuity Equation,’ Journal of Mathematical Physics 11, 2743–2763.

    Google Scholar 

  • Cushing, J. T. (1966), ‘Internal Symmetries in a Coupled-Channel Soluble Model with Inelasticity,’ The Physical Review 148, 1558–1573.

    Google Scholar 

  • Cushing, J. T. (1969), ‘Exact Static-Model Bootstrap Solutions for Arbitrary 2 × 2 Crossing Matrices,’ Journal of Mathematical Physics 10, 1319–1326.

    Google Scholar 

  • Cushing J. T. (1971), ‘Internal Symmetry Propagation in the Strong-Interaction S-Matrix,’ The Physical Review 4D, 1177–1184.

    Google Scholar 

  • Cushing, J. T. (1975), Applied Analytical Mathematics for Physical Scientists, John Wiley & Sons, New York.

    Google Scholar 

  • Cushing, J. T. (1981), ‘Electromagnetic Mass, Relativity, and the Kaufmann Experiments,’ American Journal of Phsyics (forthcoming).

  • Cutkosky, R. E. (1960), ‘Singularities and Discontinuities of Feynman Amplitudes,’ Journal of Mathematical Physics 1, 429–433.

    Google Scholar 

  • Dancoff, S. M. (1939), ‘On Radiative Corrections for Electron Scattering,’ The Physical Review 55, 959–963.

    Google Scholar 

  • de Broglie, L. (1923a), ‘Ondes et quanta,’ Comptes Rendus 177, 507–510.

    Google Scholar 

  • de Broglie, L. (1923b), ‘Quanta de lumière, diffraction et interférences,’ Comptes Rendus 177, 548–550.

    Google Scholar 

  • de Broglie, L. (1923c), ‘Les quanta, la théorie cinétique des gaz et le principe de Fermat,’ Comptes Rendus 177, 630–632.

    Google Scholar 

  • de Broglie, L. (1924), ‘A Tentative Theory of Light Quanta,’ Philosophical Magazine 47, 446–458.

    Google Scholar 

  • Debye, P. (1910), ‘Der Wahrscheinlichkeitsbegriff in der Theorie der Strahlung,’ Annnalen der Physik 33, 1427–1434.

    Google Scholar 

  • Dirac, P. A. M. (1925), ‘The Fundamental Equations of Quantum Mechanics,’ Proceedings of the Royal Society A109, 642–653. [Also in van der Waerden (1967), pp. 307–320.]

    Google Scholar 

  • Dirac, P. A. M. (1926a), ‘The Elimination of Nodes in Quantum Mechanics,’ Proceedings of the Royal Society A111, 281–305.

    Google Scholar 

  • Dirac, P. A. M. (1926b), ‘On the Theory of Quantum Mechanics,’ Proceedings of the Royal Society A112, 661–677.

    Google Scholar 

  • Dirac, P. A. M. (1927a), ‘The Quantum Theory of the Emission and Absorption of Radiation,’ Proceedings of the Royal Society A114, 243–265. [Also in Schwinger (1958).]

    Google Scholar 

  • Dirac, P. A. M. (1927b), ‘The Quantum Theory of Dispersion,’ Proceedings of the Royal Society A114, 710–728.

    Google Scholar 

  • Dirac, P. A. M. (1928), ‘The Quantum Theory of the Electron,’ Proceedings of the Royal Society A117, 610–624.

    Google Scholar 

  • Dirac, P. A. M. (1930), ‘A Theory of Electrons and Protons,’ Proceedings of the Royal Society A126, 360–365.

    Google Scholar 

  • Dirac, P. A. M. (1934a), ‘Discussion of the Infinite Distribution of Electrons in the Theory of the Positron,’ Proceedings of the Cambridge Philosophical Society 30, 150–163.

    Google Scholar 

  • Dirac, P. A. M. (1934b), ‘Theorie du Positron,’ Proceedings of the Seventh Solvay Conference (Gauthier-Villars, Paris) pp. 203–212. [Also in Schwinger (1958).]

    Google Scholar 

  • Dirac, P. A. M. (1958), The Principles of Quantum Mechanics 4th ed. (Clarendon Press, Oxford).

    Google Scholar 

  • Dirac, P. A. M., Fock, V. A., and Podolsky, B. (1932), ‘On Quantum Electrodynamics,’ Physikalische Zeitschrift der Sowjetunion Band 2 Heft 6. [Also in Schwinger (1958)].

  • Dukas, H., and Hoffmann, B. (1979), Albert Einstein: The Human Side, Princeton University Press, Princeton.

    Google Scholar 

  • Dyson, F. J. (1949a), ‘The Radiation Theories of Tomonaga, Schwinger, and Feynam,’ The Physical Review 75, 486–502. [Also in Schwinger (1958).]

    Google Scholar 

  • Dyson, F. J. (1949b), ‘The S Matrix in Quantum Electrodynamics,’ The Physical Review 75, 1736–1755. [Also in Schwinger (1958).]

    Google Scholar 

  • Eden, R. J., Landshoff, P. V., Olive, D. I., and Polkinghorne, J. C. (1966), The Analytic S-Matrix, Cambridge University Press, London.

    Google Scholar 

  • Ehrenfest, P. (1906), ‘Zur Planckschen Strahlungstheorie,’ Physikalische Zeitschrift 7, 528–532.

    Google Scholar 

  • Ehrenfest, P. (1913), ‘A Mechanical Theorem of Boltzmann and its Relation to the Theory of Energy Quanta,’ Proceedings Academy of Amsterdam 16, 591–597.

    Google Scholar 

  • Ehrenfest, P. (1916), ‘On Adiabatic Changes of a System in Connection with the Quantum Theory,’ Proceedings Academy of Amsterdam 19, 576–597.

    Google Scholar 

  • Ehrenfest, P. (1917), ‘Adiabatic Invariants and the Theory of Quanta,’ Philosophical Magazine 33, 500–513. [Also appears in van der Waerden (1967), pp. 79–93.]

    Google Scholar 

  • Einstein, A. (1905), ‘Über einen die Erzeugung und Verhandlung des Lichtes betreffenden heuristischen Gesichtspunkt,’ Annalen der Physik 17, 132–148. [Also appears as ‘On a Heuristic Point of View About the Creation and Conversion of Light’ in ter Haar (1967), pp. 91–107.]

    Google Scholar 

  • Einstein, A. (1909), Zur gegenwärtigen Stand des Strahlungsproblem,’ Physikalische Zeitschrift 10, 185–193.

    Google Scholar 

  • Einstein, A. (1917), ‘Zur Quantentheorie der Strahlung,’ Physikalische Zeitschrift 18, 121–128. [Also appears as ‘On the Quantum Theory of Radiation,’ in van der Waerden (1967), pp. 63–77, and in ter Haar (1967), pp. 167–183.]

    Google Scholar 

  • Einstein, A. (1924), ‘Quantentheorie des einatomigen idealen Gases,’ Sitzungsberichte der Preussischen Akademie der Wissenschaften, 261–267.

  • Einstein, A. (1925), ‘Quantentheorie des einatomigen idealen Gases, Zweite Abhandlung.’ Sitzungsberichte der Preussischen Akademie der Wissenschaften, 3–14.

  • Einstein, A. (1970), ‘Reply to Critiicism,’ in Schillp (1970; pp. 655–688).

    Google Scholar 

  • Einstein, A. (1973), ‘Principles of Research,’ Ideas and Opinions (Dell Publishing Co., New York).

    Google Scholar 

  • Ellis, J., Gaillard, M. K., and Ross, G. G. (1976), ‘Search for Gluons in e +e Annihilation,’ Nuclear Physics B111, 253–271.

    Google Scholar 

  • Epstein, S. T. (1948), ‘Remarks on H. S. Lewis' Paper “On the Reactive Terms in Quantum Electrodynamics,”’ The Physical Review 73, 177.

    Google Scholar 

  • Fermi, E. (1929), ‘Sopra l'elettrodinamica quantistica,’ Atti della Reale Academia Nazionale dei Lincei 9, 881–887.

    Google Scholar 

  • Fermi, E. (1930), ‘Sopra l'elettrodinamica quantistica. Note II,’ Atti della Reale Academia Nazionale dei Lincei 12, 431–435. [Also in Schwinger (1958).]

    Google Scholar 

  • Fermi, E. (1932), ‘Quantum Theory of Radiation’ Reviews of Modern Physics 4, 87–132.

    Google Scholar 

  • Fermi, E. (1933), ‘Tentativo di una Teoria dell' Emissione dei Raggi “Beta”,’ Ricerca Scientifica 2, 491–495.

    Google Scholar 

  • Fermi, E. (1934a), ‘Tentativo di una Teoria dei Raggi β,’ Il Nuovo Cimento 11, 1–19.

    Google Scholar 

  • Fermi, E. (1934b), ‘Versuch Einer Theorie der β-Strahlen. I.’ Zeitschrift für Physik 88, 161–171.

    Google Scholar 

  • Feynman, R. P. (1949a), ‘The Theory of Positrons,’ The Physical Review 76, 749–759. [Also in Schwinger (1958).]

    Google Scholar 

  • Feynman, R. P. (1949b), ‘Space-Time Approach to Quantum Electrodynamics,’ The Physical Review 76, 769–789. [Also in Schwinger (1958).]

    Google Scholar 

  • Feynman, R. P. (1950), ‘Mathematical Formulation of the Quantum Theory of Electromagnetic Interaction,’ The Physical Review 80, 440–457. [Also in Schwinger (1958).]

    Google Scholar 

  • Feynman, R. P. (1972), ‘The Development of the Space-Time View of Quantum Electrodynamics,’ Nobel Lectures, Physics, Elsevier, Amsterdam, pp. 173–174.

    Google Scholar 

  • Fierz, F., and Weisskopf, V. F. (eds.) (1960), Theoretical Physics in the Twentieth Century, Interscience, New York.

    Google Scholar 

  • Foley, H. M., and Kusch, P. (1948), ‘On the Intrinsic Moment of the Electron,’ The Physical Review 73, 412. [Also in Schwinger (1958).]

    Google Scholar 

  • Fowler, A. (1913), ‘The Spectra of Helium and Hydrogen,’ Nature 92, 95–96.

    Google Scholar 

  • Froissart, M., and Taylor, J. P. (1967), ‘Cluster Decomposition and the Spin-Statistics Theorem in S-Matrix Theory,’ The Physical Review 153, 1636–1648.

    Google Scholar 

  • Gell-Mann, M. (1956), ‘Dispersion Relations in Pion-Nucleon and Photon-Nucleon Scattering,’ Proceedings of the Sixth Annual Rochester Conference, High Energy Nuclear Physics, 1956, Interscience Publishers, New York, Section III, pp. 30–36.

    Google Scholar 

  • Gell-Mann, M. (1962a), ‘Symmetry Properties of Fields,’ Proceedings of the Twelfth Solvay Conference, 1961, Interscience Publishers, New York, pp. 131–146.

    Google Scholar 

  • Gell-Mann, M. (1962b), ‘Symmetries of Baryons and Mesons,’ The Physical Review 125, 1067–1084.

    Google Scholar 

  • Gell-Mann, M., and Goldberger, M. L. (1953), ‘The Formal Theory of Scattering,’ The Physical Review 91, 398–408.

    Google Scholar 

  • Gell-Mann, M., Goldberger, M. L., and Thirring, W. E. (1954), ‘Use of Causality Conditions in Quantum Theory,’ The Physical Review 95, 1612–1627.

    Google Scholar 

  • Gell-Mann, M., and Ne'eman, Y. (1964), The Eightfold Way, W. A. Benjamin, New York.

    Google Scholar 

  • Glashow, S. L. (1980), ‘Towards a Unified Theory: Threads in a Tapestry.’ Reviews of Modern Physics 52, 539–543.

    Google Scholar 

  • Glashow, SL. L., Iliopoulos, J., and Maiani, L. (1970), ‘Weak Interactions with Lepton-Hadron Symmetry,’ The Physical Review D2, 1285–1292.

    Google Scholar 

  • Goldberger, M. L. (1955a), ‘Use of Causality Conditions in Quantum Theory,’ The Physical Review 97, 508–510.

    Google Scholar 

  • Goldberger, M. L. (1955b), ‘Causality Conditions and Dispersion Relations. I. Boson Fields,’ The Physical Review 99, 979–985.

    Google Scholar 

  • Goldstein, H. (1950), Classical Mechanics, Addison-Wesley, Reading.

    Google Scholar 

  • Goldstone, J. (1961), ‘Field Theories with “Superconductor” Solutions,’ Il Nuovo Cimento 19, 154–164.

    Google Scholar 

  • Goldstone, J., Salam, A., and Weinberg, S. (1962), ‘Broken Symmetries,’ The Physical Review 127, 965–970.

    Google Scholar 

  • Greenberg, O. W. (1964), ‘Spin and Unitary-Spin Independence in a Paraquark Model of Baryons and Mesons,’ Physical Review Letters 13, 598–602.

    Google Scholar 

  • Greenberg, O. W., and Resnikoff, M. (1967), ‘Symmetric Quark Model of Baryon Resonances.’ The Physical Review 163, 1844–1851.

    Google Scholar 

  • Guralnik, G. S., Hagen, C. R., and Kibble, T. W. B. (1968), ‘Broken Symmetries and the Goldstone Theorem,’ in Cool and Marshak (1968; pp. 567–708).

    Google Scholar 

  • Haas, A. E. (1910a), ‘Über eine neue theoretische Methode zur Bestimmung des elektrischen Elementarquantums des Wasserstoffatoms,’ Physikalische Zeitschrift 11, 537–538.

    Google Scholar 

  • Haas, A. E. (1910b), ‘Über die elektrodynamische Bedeutung des Planck'schen Strahlungsgesetzes and über eine neue Bestimmung des elektrischen Elmentarquantums und der Dimensionen des Wasserstoffatoms,’ Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften 119, 119–144.

    Google Scholar 

  • Haas, A. E. (1928), Wave Mechanics and the New Quantum Theory, Constable & Co., London.

    Google Scholar 

  • Hacking, I. (1979), ‘Imre Lakatos' Philosophy of Science,’ British Journal for the Philosophy of Science 30, 381–402.

    Google Scholar 

  • Halliday, D., and Resnick, R. (1966), Physics, Parts I and II, John Wiley & Sons, New York.

    Google Scholar 

  • Hanle, P. A. (1977a), ‘The Coming of Age of Erwin Schrödinger: His Quantum Statistics of Ideal Gases,’ Archive for History of The Exact Sciences 17, 165–192.

    Google Scholar 

  • Hanle, P. A. (1977b), ‘Erwin Schrödinger's Reaction to Louis de Broglie's Thesis on the Quantum Theory,’ Isis 68, 606–609.

    Google Scholar 

  • Hanle, P. A. (1979), ‘The Schrödinger-Einstein Correspondence and the Sources of Wave Mechanics,’ American Journal of Physics 47, 644–648.

    Google Scholar 

  • Hasert, F. J., et al. (1973a), ‘Search for Elastic Muon-Neutrino-Electron Scattering,’ Physics Letters 46B, 121–124.

    Google Scholar 

  • Hasert, F. J., et al. (1973b), ‘Observation of Neutrino-Like Interactions without Muon or Electron in the Gargamelle Neutrino Experiment,’ Physics Letters 46B, 138–140.

    Google Scholar 

  • Heilbron, J. L., and Kuhn, T. S. (1969), ‘The Genesis of the Bohr Atom,’ Historical Studies in the Physical Sciences, University of Pennsylvania Press, Philadelphia, pp. 211–290.

    Google Scholar 

  • Heisenberg, W. (1925), ‘Über Quantentheoretische Umdeutung kinematischer und mechanischer Bezeihungen,’ Zeitschrift für Physik 33, 879–893. [Also appears as ‘Quantum-Theoretical Re-Interpretation of Kinematic and Mechanical Relations,’ in van der Waerden (1967), pp. 261–276.]

    Google Scholar 

  • Heisenberg, W. (1930), ‘Die Selbstenergie des Elektrons,’ Zeitschrift für Physik 65, 4–13.

    Google Scholar 

  • Heisenberg, W. (1932), ‘Über den Bau der Atomkerne. I,’ Zeitschrift für Physik 77, 1–11.

    Google Scholar 

  • Heisenberg, W. (1934), ‘Bemerkungen zur Diracschen Theorie des Positrons,’ Zeitschrift für Physik 90, 209–231.

    Google Scholar 

  • Heisenberg, W. (1936), ‘Zur Theorie der “Schauer” in der Höhenstrahlung,’ Zeitschrift für Physik 101, 533–540.

    Google Scholar 

  • Heisenberg, W. (1938), ‘Uber die in der Theorie der Elementarteilchen auftretende universelle Länge,’ Annalen der Physik 32, 20–33.

    Google Scholar 

  • Heisenberg, W. (1943a), ‘Die “beobachtbaren Grössen” in der Theorie der Elementarteilchen,’ Zeitschrift für Physik 130, 513–538.

    Google Scholar 

  • Heisenberg, W. (1943b), ‘Die beobachtbaren Grössen in der Theorie der Elementarteilchen. II,’ Zeitschrift für Physik 120, 673–677.

    Google Scholar 

  • Heisenberg, W. (1944), ‘Die beobachtbaren Grössen in der Theorie der Elementarteilchen. III,’ Zeitschrift für Physik 123, 93–111.

    Google Scholar 

  • Heisenberg, W. (1957), ‘Quantum Theory of Fields and Elementary Particles,’ Reviews of Modern Physics 29, 269–278.

    Google Scholar 

  • Heisenberg, W. (1958), ‘Research on the Non-Linear Spinor Theory with Indefinite Metric in Hilbert Space,’ Proceedings of the 1958 Annual International Conference on High Energy Physics at CERN, CERN, Geneva, pp. 119–122.

    Google Scholar 

  • Heisenberg, W. (1966), Introduction to the Unified Field Theory of Elementary Particles, Interscience Publishers, New York.

    Google Scholar 

  • Heisenberg, W., and Pauli, W. (1929), ‘Zur Quantendynamik der Wellenfelder,’ Zeitschrift für Physik 56, 1–61.

    Google Scholar 

  • Heisenberg, W. and Pauli, W. (1930), ‘Zur Quantentheorie der Wellenfelder. II,’ Zeitschrift für Physik 59, 168–190.

    Google Scholar 

  • Heitler, W. (1936), The Quantum Theory of Radiation, Oxford University Press, Oxford.

    Google Scholar 

  • Henley, E. M., and Thirring, W. (1962), Elementary Quantum Field Theory, McGraw-Hill, New York, pp. 18–22.

    Google Scholar 

  • Herb, S. W., et al. (1977), ‘Observation of a Dimuon Resonance at 9.5 GeV in 400-GeV Proton-Nucleus Collisions,’ Physical Review Letters 39, 252–255.

    Google Scholar 

  • Hermann, A. (1971), The Genesis of Quantum Theory (1899–1913), MIT Press, Boston.

    Google Scholar 

  • Hesse, M. B. (1955), Science and Human Imagination, Philosophical Library, New York.

    Google Scholar 

  • Hesse, M. B. (1961), Forces and Fields, Thomas Nelson and Sons, London.

    Google Scholar 

  • Hesse, M. B. (1966), Models and Analogies in Science, University of Notre Dame Press, Notre Dame.

    Google Scholar 

  • Hesse, M. (1974), The Structure of Scientific Inference, University of California Press, Berkeley.

    Google Scholar 

  • Higgs, P. W. (1964a), ‘Broken Symmetries, Massless Particles and Gauge Fields,’ Physics Letters 12, 132–133.

    Google Scholar 

  • Higgs, P. W. (1964b), ‘Broken Symmetries and the Masses of Gauge Bosons,’ Physical Review Letters 13, 508–509.

    Google Scholar 

  • Higgs, P. W. (1966), ‘Spontaneous Symmetry Breakdown without Massless Bosons,’ The Physical Review 145, 1156–1163.

    Google Scholar 

  • Howson, C. (ed.) (1976), Method and Appraisal in the Physical Sciences, Cambridge University Press, Cambridge.

    Google Scholar 

  • Huang, K., and Low, F. E. (1965), ‘Exact Bootstrap Solutions in Some Static Models of Meson-Baryon Scattering,’ Journal of Mathematical Physics 6, 795–816.

    Google Scholar 

  • Hund, F. (1974), The History of Quantum Theory, Barnes & Noble, New York. This is an extremely lucid, semi-technical exposition of the major developments in quantum theory.

    Google Scholar 

  • Iagolnitzer, D. (1978), The S-Matrix, North-Holland, Amsterdam.

    Google Scholar 

  • Iizuka, J. (1966), ‘A Systematics and Phenomenology of Meson Family,’ Supplement to Progress in Theoretical Physics 37–38, 21–34.

    Google Scholar 

  • Jackson, J. D. (1975), Classical Electricity and Magnetism, 2nd ed., John Wiley & Sons, New York.

    Google Scholar 

  • Jacob, M., and Chew, G. F. (1964), Strong-Interaction Physics, W. A. Benjamin, New York.

    Google Scholar 

  • Jammer, M. (1966), The Conceptual Development of Quantum Mechanics, McGraw-Hill, New York.

    Google Scholar 

  • Johnson, K. A. (1958), ‘Consistency of Quantum Electrodynamics,’ The Physical Review 112, 1367–1370.

    Google Scholar 

  • Jordan, P. (1927), ‘Zur Quantenmechanik der Gasentartung,’ Zeitschrift fur Physik 44, 473–480.

    Google Scholar 

  • Jordan P., and Klein, O. (1927), ‘Zum Mehrköperproblem der Quantentheorie,’ Zeitschrift für Physik 45, 751–765.

    Google Scholar 

  • Jordan, P., and Pauli, W. (1928), ‘Zur Quantenelektrodynamik ladungsfreier Felder,’ Zeitschrift für Physik 47, 151–173.

    Google Scholar 

  • Jordan, P., and Wigner, E. (1928), ‘Über das Paulische Äquivalenzverbot,’ Zeitschrift für Physik 47, 631–651. [Also in Schwinger (1958).]

    Google Scholar 

  • Källen, G. (1953), ‘On the Magnitude of the Renormalization Constants in Quantum Electrodynamics,’ Kongelige Danske Videnskabernes Selskab, Matematisk-Fysiske Meddelelser 27, No. 12. [Also in Schwinger (1958).]

  • Karplus, R., and Kroll, N. M. (1950), ‘Fourth-Order Corrections in Quantum Electrodynamics and the Magnetic Moment of the Electron,’ The Physical Review 77, 536–549.

    Google Scholar 

  • Klein, M. J. (1962), ‘Max Planck and the Beginnings of the Quantum Theory,’ Archive for History of the Exact Sciences 1, 459–479.

    Google Scholar 

  • Klein, M. J. (1963a), ‘Planck, Entropy, and Quanta, 1901–1906,’ The Natural Philosopher, Vol. I, Blaisdell, New York, pp. 81–108.

    Google Scholar 

  • Klein, M. J. (1963b), ‘Einstein's First Paper on Quanta,’ The Natural Philosopher, Vol. II, Blaisdell, New York, pp. 57–86.

    Google Scholar 

  • Klein, M. J. (1964), ‘Einstein and the Wave-Particle Duality,’ The Natural Philosopher, Vol. III, Blaisdell, New York, pp. 1–49.

    Google Scholar 

  • Koertge, N. (1978), ‘Towards a New Theory of Scientific Inquiry,’ in Radnitzky and Andersson (1978; pp. 253–278).

    Google Scholar 

  • Kramers, H. A. (1924), ‘The Law of Disperson and Bohr's Theory of Spectra,’ Nature 113, 673–674. [Also in van der Waerden (1967), pp. 177–180.]

    Google Scholar 

  • Kramers, H. A. (1950), ‘Non-relativistic Quantum Electrodynamics and Correspondence Principle,’ Proceedings of the Eight Solvay Conference, 1948, Stoops, Brussels, pp. 241–268.

    Google Scholar 

  • Kramers, H. A. and Heisenberg, W. (1925), ‘Über die Streuung von Strahlen durch Atome,’ Zeitschrift für Physik 31, 681–708. [Also appears as ‘On the Dispersion of Radiation by Atoms’ in van der Waerden (1967), pp. 227–252.]

    Google Scholar 

  • Kroll, N. M., and Lamb, W. E. (1949), ‘On the Self-Energy of a Bound Electron,’ The Physical Review 75, 388–398. [Also in Schwinger (1958).]

    Google Scholar 

  • Kronig, R. (1946), ‘A Supplementary Condition in Heisenberg's Theory of Elementary Particles,’ Physica 12, 543–544.

    Google Scholar 

  • Kuhn, T. S. (1970a), The Structure of Scientific Revolutions, 2nd ed., University of Chicago Press, Chicago.

    Google Scholar 

  • Kuhn, T. S. (1970b), ‘Logic of Discovery or Psychology of Research?’ in Lakatos and Musgrave (1970; pp. 1–23).

    Google Scholar 

  • Kuhn, T. S. (1970c), ‘Reflections on My Critics,’ in Lakatos and Musgrave (1970; pp. 231–278).

    Google Scholar 

  • Kuhn, T. S. (1977), The Essential Tension, University of Chicago Press, Chicago.

    Google Scholar 

  • Kuhn, T. S. (1978), Black-Body Theory and the Quantum Discontinuity 1894–1912, Clarendon Press, Oxford.

    Google Scholar 

  • Ladenberg, R. (1921), ‘Die quantentheoretische Zahl der Dispersionselektronen,’ Zeitschrift für Physik 4, 451–468. [Also appears as ‘The Quantum-Theoretical Interpretation of the Number of Dispersion Electrons’ in van der Waerden (1967), pp. 139–157.]

    Google Scholar 

  • Lakatos, I. (1970), ‘Falisification and the Methodology of Scientific Research Programmes,’ in Lakatos and Musgrave (1970; pp. 91–196).

    Google Scholar 

  • Lakatos, I. (1976), ‘History of Science and its Rational Reconstructions,’ in Howson (1976; pp. 1–39).

    Google Scholar 

  • Lakatos, I., and Musgrave, A. (eds.) (1970), Criticism and the Growth of Knowledge, Cambridge University Press, London.

    Google Scholar 

  • Lamb, W. E., and Retherford, R. C. (1947), ‘Fine Structure of the Hydrogen Atom by a Microwave Method,’ The Physical Review 72, 241–243. [Also in Schwinger (1958).]

    Google Scholar 

  • Landau, L. D. (1959), ‘On Analytic Properties of Vertex Parts in Quantum Field Theory,’ Nuclear Physics 13, 181–192.

    Google Scholar 

  • Lautrup, B. E., Peterman, A., and de Rafael, E. (1972), ‘Recent Developments in the Comparison Between Theory and Experiments in Quantum Electrodynamics,’ Physics Reports 3C, 193–260.

    Google Scholar 

  • Lewis, H. W. (1948), ‘On the Reactive Terms in Quantum Electrodynamics,’ The Physical Review 73, 173–177.

    Google Scholar 

  • Lorentz, H. A. (1909), The Theory of Electrons, B. G. Teubner, Leipzig; also, Dover Publications, New York (1952) pp. 39, 49, 252–254.

    Google Scholar 

  • Lovelace, C. (1968), ‘A Novel Application of Regge Trajectories,’ Physics Letters 28B, 264–268.

    Google Scholar 

  • MacKinnon, E. (1976), ‘De Broglie's Thesis: A Critical Retrospective,’ American Journal of Physics 44, 1047–1055.

    Google Scholar 

  • MacKinnon, E. (1977), ‘Heisenberg, Models, and the Rise of Matrix Mechanics,’ Historical Studies in the Physical Sciences 8, Johns Hopkins University Press, Baltimore, pp. 137–188.

    Google Scholar 

  • MacKinnon, E. (1979), ‘Scientific Realism: The New Debates,’ Philosophy of Science 46, 501–532.

    Google Scholar 

  • MacKinnon, E. (1980), ‘The Discovery of a New Quantum Theory,’ in Nickles (1980; pp. 261–272).

    Google Scholar 

  • Mandelstam, S. (1958), ‘Determination of the Pion-Nucleon Scattering Amplitude from Dispersion Relations and Unitarity. General Theory,’ The Physical Review 112, 1344–1360.

    Google Scholar 

  • Mandelstam, S. (1959a), ‘Analytic Properties of Transition Amplitudes in Perturbation Theory,’ The Physical Review 115, 1741–1751.

    Google Scholar 

  • Mandelstam, S. (1959b), ‘Construction of the Perturbation Series for Transition Amplitudes from their Analyticity and Unitarity Properties,’ The Physical Review 115, 1752–1762.

    Google Scholar 

  • Mandl, F. (1959), Introduction to Quantum Field Theory, (Interscience, New York).

    Google Scholar 

  • Martin, A. W., and McGlinn, W. D. (1964), ‘Crossing Relations and the Predictions of Symmetries in a Soluble Model,’ The Physical Review 136B, 1515–1522.

    Google Scholar 

  • Matthews, P., and Salam, A. (1954), ‘Renormalization,’ The Physical Review 94, 185–191.

    Google Scholar 

  • McMullin, E. (1968), ‘What Do Physical Models Tell Us?’ in van Rootselaar and Staal (1968; pp. 385–396, especially pp. 392–395).

    Google Scholar 

  • McMulln, E. (1976), ‘The Fertility of Theory and the Unit for Appraisal in Science,’ in Cohen et al. (1976; pp. 681–718).

    Google Scholar 

  • Mehra, J. (ed.) (1973), The Physicists's Conception of Nature, Reidel, Dordrecht.

    Google Scholar 

  • Mehra, J. (ed.) (1975), The Solvay Conferences on Physics, Reidel, Dordrecht.

    Google Scholar 

  • Meyerson, E. (1930), Identity and Reality, Macmillan, New York.

    Google Scholar 

  • Møller, C. (1945), ‘General Properties of the Characteristic Matrix in the Theory of Elementary Particles I,’ Kongelige Danske Videnskabernes Selskab, Matematisk-Fysiske Meddelelser 23, No. 1.

  • Møller, C. (1946), ‘General Properties of the Characteristic Matrix in the Theory of Elementary Particles II.’ Kongelige Danske Videnskabernes Selskab, Matematisk-Fysiske Meddelelser 22, No. 19.

  • Musgrave, A. (1978), ‘Evidential Support, Falsification, Heuristics, and Anarchism,’ in Radnitzky and Andersson (1978; pp. 181–201)

    Google Scholar 

  • Nickles, T. (ed.) (1980), Scientific Discovery: Case Studies, D. Reidel, Dordrecht.

    Google Scholar 

  • Noether, E. (1918), ‘Invariante Variationsprobleme,’ Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen Mathematisch-physialische Klasse aus dem Jahre 1918, 235–257.

  • Okubo, S. (1963), ‘ø-Meson and Unitary Symmetry Model,’ Physics Letters 5, 165–168.

    Google Scholar 

  • Olive, D. I. (1964), ‘Exploration of S-Matrix Theory,’ The Physical Review 135B, 745–760.

    Google Scholar 

  • Oppenheimer, J. R. (1930), ‘Note on the Theory of the Interaction of Field and Matter,’ The Physical Review 35, 461–477.

    Google Scholar 

  • Oppenheimer, J. R. (1950), ‘Electron Theory,’ Proceedings of the Eighth Solvay Conference, 1948, Stoops, Brussels, pp. 269–286. [Also in Schwinger (1958).]

    Google Scholar 

  • O'Raifeartaigh, L. (1979), ‘Hidden Gauge Symmetry,’ Reports on Progress in Physics 42, 159–223.

    Google Scholar 

  • Pais, A. (1979), ‘Einstein and the Quantum Theory,’ Reviews of Modern Physics 51, 863–914.

    Google Scholar 

  • Pauli, W. (1926), Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik,’ Zeitschrift für Physik 36, 336–363. [Also appears as ‘On the Hydrogen Spectrum from the Standpoint of the New Quantum Mechanics,’ in van der Waerden (1967), pp. 387–415.]

    Google Scholar 

  • Pauli, W. (1934), ‘Discussion du Rapport de M. Heisenberg,’ Proceedings of the Seventh Solvay Conference, Gauthier-Villars, Paris, pp. 324–325.

    Google Scholar 

  • Pauli, W. (1940), ‘The Connection Between Spin and Statistics,’ The Physical Review 58, 716–722.

    Google Scholar 

  • Pauli, W. (ed.) (1955), Niels Bohr and the Development of Physics, Pergamon, New York.

    Google Scholar 

  • Perl, M. L. et al. (1976), ‘Properties of Anomalous eμ Events Produced in e +e Annihilation,’ Physics Letters 63B, 466–470.

    Google Scholar 

  • Peterman, A. (1957), ‘Fourth Order Magnetic Moment of the Electron,’ Helvetica Physica Acta 30, 407–408.

    Google Scholar 

  • Pickering, E. C. (1896), ‘Stars Having Peculiar Spectra. New Variable Stars in Crux and Cygnus,’ The Astrophysical Journal 4, 369–370.

    Google Scholar 

  • Planck, M. (1900a), ‘Ueber eine Verbesserung der Wien'schen Spectralgleichung,’ Verhandlungen der Deutschen Physikalischen Gesellschaft 2, 202–204. [Also appears as ‘On an Improvement of Wien's Equations for the Spectrum’ in ter Haar (1967), pp. 79–81.]

    Google Scholar 

  • Planck, M. (1900b), ‘Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum,’ Verhandlungen der Deutschen Physikalischen Gesellschaft 2, 237–245. [Also appears as ‘On the Theory of the Energy Distribution Law of the Normal Spectrum’ in ter Haar (1967), pp. 82–90.]

    Google Scholar 

  • Planck, M. (1901), ‘Über das Gesetz der Energieverteilung im Normalspektrum,’ Annalen der Physik 4, 553–563.

    Google Scholar 

  • Planck, M. (1949), Scientific Autobiography, Philosophical Library, New York.

    Google Scholar 

  • Politzer, H. D. (1973), ‘Reliable Perturbative Results for Strong Interactions?’ Physical Review Letters 30, 1346–1349.

    Google Scholar 

  • Politzer, H. D. (1974), ‘Asymptotic Freedom: An Approach to Strong Interactions,’ Physics Reports 14C, 129–180.

    Google Scholar 

  • Popper, K. (1970), ‘Normal Science and Its Dangers,’ in Lakatos and Musgrave (1970; pp. 51–58).

    Google Scholar 

  • Post, H. (1978), ‘Objectivism vs. Sociologism,’ in Radnitzky and Anderson (1978; pp. 311–318).

    Google Scholar 

  • Radnitzky, G., and Andersson, G. (eds.) (1978a), Progress and Rationality in Science, D. Reidel, Dordrecht.

    Google Scholar 

  • Radnitzky, G., and Andersson, G. (1978b), ‘Objective Criteria of Scientific Progress? Induction, Falsificationism, and Relativism,’ in Radnitzky and Andersson (1978; pp. 3–19).

    Google Scholar 

  • Raman, V. V., and Forman, P. (1969), ‘Why Was It Schrödinger Who Developed de Broglie's Ideas?’ Historical Studies in the Physical Sciences, University of Pennsylvania Press, Philadelphia, pp. 291–314.

    Google Scholar 

  • Rayleigh, Lord (1902), ‘On the Pressure of Vibrations,’ Philosophical Magazine 3, 338–346.

    Google Scholar 

  • Redhead, M. L. G. (1953), ‘Radiative Corrections to the Scattering of Electrons and Positrons by Electrons,’ Proceedings of the Royal Society of London A220, 219–239.

    Google Scholar 

  • Redhead, M. L. G. (1975), ‘Symmetry in Intertheory Relations,’ Synthese 32, 77–112.

    Google Scholar 

  • Redhead, M. L. G. (1977), ‘Wave-Particle Duality,’ British Journal for the Philosophy of Science 28, 65–80, especially p. 71.

    Google Scholar 

  • Redhead, M. L. G. (1980a), ‘Models in Physics,’ The British Journal for the Philosophy of Science 31, 145–163.

    Google Scholar 

  • Redhead, M. L. G. (1980b), ‘Some Philosophical Aspects of Particle Physics,’ Studies in History and Philosophy of Science 11, 279–304.

    Google Scholar 

  • Redhead, M. L. G. (1980c), ‘Experimental Tests of the Sum Rule,’ Philosophy of Science (to appear).

  • Regge, T. (1959), ‘Introduction to Complex Orbital Momenta,’ Il Nuovo Cimento 14, 951–976.

    Google Scholar 

  • Reines, F., Sobel, H. W., and Pasierb, E. (1980), ‘Evidence for Neutrino Instability,’ University of California, Irvine, preprint.

    Google Scholar 

  • Rosenfeld, L. (1971), ‘Men and Ideas in the History of Atomic Theory,’ Archive for History of the Exact Sciences 7, 69–90.

    Google Scholar 

  • Salam, A. (1952), ‘Renormalized S-matrix for Scalar Electrodynamics,’ The Physical Review 86, 731–744.

    Google Scholar 

  • Salam, A. (1960), ‘An Equivalence Theorem for Partially Gauge-Invariant Vector Meson Interactions,’ Nuclear Physics 18, 681–690.

    Google Scholar 

  • Salam, A. (1968), ‘Weak and Electromagnetic Interactions,’ Proceedings of the Eighth Nobel Conference (Interscience Publishers, New York) pp. 367–377.

    Google Scholar 

  • Salam, A. (1973), ‘Progress in Renormalization Theory Since 1949,’ in Mehra (1973; pp. 430–446).

    Google Scholar 

  • Salam, A. (1980), ‘Gauge Unification of Fundamental Forces,’ Reviews of Modern Physics 52, 525–538.

    Google Scholar 

  • Salam, A., and Wigner, E. P. (eds.) (1972), Aspects of Quantum Theory, Cambridge University Press, Cambridge.

    Google Scholar 

  • Scherk, J. (1975), ‘An Introduction to the Theory of Dual Models and Strings,’ Reviews of Modern Physics 47, 123–164.

    Google Scholar 

  • Schiff, L. I. (1955), Quantum Mechanics, 2nd ed., McGraw-Hill, New York.

    Google Scholar 

  • Schillp, P. A., (ed.) (1970), Albert Einstein: Philosopher-Scientist, Open Court, La Salle.

    Google Scholar 

  • Schrödinger, E. (1924), ‘Gasentartung und freie Weglänge,’ Physikalische Zeitschrift 25, 41–45.

    Google Scholar 

  • Schrödinger, E. (1926a), ‘Zur Einsteinschen Gastheorie,’ Physikalische Zeitschrift 27, 95–101.

    Google Scholar 

  • Schrödinger, E. (1926b), ‘Quantisierung als Eigenwertproblem I,’ Annalen der Physik 79, 361–376. [Also appears as ‘Quantization as an Eigenvalue Problem I’ in Schrödinger (1928).]

    Google Scholar 

  • Schrödinger, E. (1926c), ‘Quantisierung als Eigenwertproblem II,’ Annalen der Physik 79, 489–527. [Also in Schrödinger (1928).]

    Google Scholar 

  • Schrödinger, E. (1926d), ‘Quantisierung als Eigenwertproblem III,” Annalen der Physik 80, 437–490. [Also in Schrödinger (1928).]

    Google Scholar 

  • Schrödinger, E. (1926e), ‘Quantisierung als Eigenwertproblem IV,’ Annalen der Physik 81, 109–139. [Also in Schrödinger (1928).]

    Google Scholar 

  • Schrödinger, E. (1926f), ‘Über das Verhältnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinen,’ Annalen der Physik 79, 734–756. [Also appears as ‘On the Relation Between the Quantum Mechanics of Heisenberg, Born, and Jordan, and that of Schrödinger,’ in Schrödinger (1928), pp. 45–61.]

    Google Scholar 

  • Schrödinger, E. (1928), Collected Papers on Wave Mechanics, Blackie & Sons, London. [This English translation was also reissued by Chelsea Publishing Co. (New York) in 1978].

    Google Scholar 

  • Schwarz, J. H. (1973), ‘Dual Resonance Theory,’ Physics Reports 8C, 269–335.

    Google Scholar 

  • Schweber, S. S. (1961), An Introduction to Relativistic Quantum Field Theory, Row, Peterson, Evanston.

    Google Scholar 

  • Schwinger, J. (1948a), ‘On Quantum-Electrodynamics and the Magnetic Moment of the Electron,’ The Physical Review 73, 416. [Also in Schwinger (1958).]

    Google Scholar 

  • Schwinger, J. (1948b), ‘Quantum Electrodynamics. I. A Covariant Formulation,’ The Physical Review 74, 1439–1461.

    Google Scholar 

  • Schwinger, J. (1949a), ‘Quantum Electrodynamics. II. Vacuum Polarization and Self-Energy,’ The Physical Review 75, 651–579.

    Google Scholar 

  • Schwinger, J. (1949b), ‘On Radiative Corrections to Electron Scattering,’ The Physical Review 75, 898–899. [Also in Schwinger (1958).]

    Google Scholar 

  • Schwinger, J. (1949c), ‘Quantum Electrodynamics. III. The Electromagnetic Properties of the Electron-Radiative Corrections to Scattering,’ The Physical Review 76, 790–817. [Also in Schwinger (1958).]

    Google Scholar 

  • Schwinger, J. (1951), ‘On Gauge Invariance and Vacuum Polarization,’ The Physical Review 82, 664–679. [Also in Schwinger (1958).]

    Google Scholar 

  • Schwinger, J. (ed.) (1958), Quantum Electrodynamics, Dover Publications, New York.

    Google Scholar 

  • Shrader-Frechette, K. (1977), ‘Atomism in Crisis: An Analysis of the Current High Energy Paradigm.’ Philosophy of Science 44, 409–440.

    Google Scholar 

  • Slotnick, M., and Heitler, W. (1949), ‘The Charge Density and Magnetic Moments of the Nucleons,’ The Physical Review 75, 1645–1663.

    Google Scholar 

  • Sommerfeld, A. (1916), ‘Zur Quantentheorie der Spektrallinien,’ Annalen der Physik 51, 1–94; 125–167.

    Google Scholar 

  • Sommerfeld, A. (1934), Atomic Structure and Spectral Lines, Vol. 1 [translated by H. L. Brose], Methuen & Co., London.

    Google Scholar 

  • Sommerfield, C. M. (1957), ‘Magnetic Dipole Moment of the Electron,’ The Physical Review 107, 328–329.

    Google Scholar 

  • Sommerfield, C. (1958), ‘The Magnetic Moment of the Electron,’ Annals of Physics 5, 26–57.

    Google Scholar 

  • Stapp, H. P. (1962a), ‘Derivation of the CPT Theorem and the Connection Between Spin and Statistics from Postulates of the S-Matrix Theory,’ The Physical Review 125, 2139–2162.

    Google Scholar 

  • Stapp, H. P. (1962b), ‘Axiomatic S-Matrix Theory,’ Reviews of Modern Physics 34, 390–394.

    Google Scholar 

  • Stapp, H. P. (1971), ‘S-Matrix Interpretation of Quantum Theory,’ The Physical Review 3D, 1303–1320.

    Google Scholar 

  • Stapp, H. P. (1972a), ‘The Copenhagen Interpretation of Quantum Theory,’ American Journal of Physics 40, 1098–1116.

    Google Scholar 

  • Stapp, H. P. (1972b), ‘Foundations of S-Matrix Theory I: Theory of Measurement’ [Lawrence Berkeley Laboratory Report 759. Revised (June 13, 1972).]

  • Stapp, H. P. (1975), ‘Bell's Theorem and World Processes,’ Il Nuovo Cimento 29B, 270–276.

    Google Scholar 

  • Stapp, H. P. (1979), ‘Whiteheadian Approach to Quantum Theory and the Generalized Bell's Theorem,’ Foundations of Physics 9, 1–25.

    Google Scholar 

  • Sterman, G., and Weinberg, S. (1977), ‘Jets from Quantum Chromodynamics,’ Physical Review Letters 39, 1436–1439.

    Google Scholar 

  • Stuckelberg, E. C. G. (1943), ‘Un modèle de l'électron ponctuel II,’ Helvetica Physica Acta 17, 3–26.

    Google Scholar 

  • Stuckelberg, E. C. G. (1945), ‘Mécanique fonctionnelle,’ Helvetica Physica Acta 18, 195–220.

    Google Scholar 

  • Stuckelberg, E. C. G. (1946), ‘Une propriété de l'opérateur S en mécanique asymptotique,’ Helvetica Physica Acta 19, 242–243.

    Google Scholar 

  • Stuewer, R. H. (1975), The Compton Effect, Science History Publications, New York.

    Google Scholar 

  • Taylor, J. C. (1978), Gauge Theories of Weak Interactions, Cambridge University Press, Cambridge.

    Google Scholar 

  • ter Haar, D. (1967), The Old Quantum Theory, Pergamon Press, London.

    Google Scholar 

  • 't Hofft, G. (1971), ‘Renormalizable Lagrangians for Massive Yang-Mills Fields,’ Nuclear Physics B35, 167–188.

    Google Scholar 

  • Tomonaga, S. (1946), ‘On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields,’ Progress in Theoretical Physics 1, 27–42. [Originally published in 1943 in Japanese.]

    Google Scholar 

  • Tomonaga, S. (1948), ‘On Infinite Field Reactions in Quantum Field Theory,’ The Physical Review 74, 224. [Also in Schwinger (1958).]

    Google Scholar 

  • Tomonaga, S. (1972), ‘Development of Quantum Electrodynamics,’ Nobel Lectures, Physics, Elsevier, Amsterdam.

    Google Scholar 

  • van der Waerden, B. L. (ed.) (1967), Sources of Quantum Mechanics, North-Holland, Amsterdam.

    Google Scholar 

  • van Rootselaar, B., and Staal, J. F. (eds.) (1968), Logic, Methodology, and Philosophy of Science III, North-Holland, Amsterdam.

    Google Scholar 

  • Veneziano, G. (1968), ‘Construction of a Crossing-Symmetric, Regge-Behaved Amplitude for Linearly Rising Trajectories,’ Il Nuovo Cimento 57A, 190–197.

    Google Scholar 

  • Waller, I. (1930), ‘Bemerkungen über die Rolle der Eigenenergie des Elektrons in der Quantentheorie der Strahlung,’ Zeitschrift für Physik 62, 673–676.

    Google Scholar 

  • Watkins, J. (1978a), ‘The Popperian Approach to Scientific Knowledge,’ in Radnitzky and Andersson (1978; pp. 23–43).

    Google Scholar 

  • Watkins, J. (1978b), ‘Corroboration and the Problem of Content-Comparison,’ in Radnitzky and Andersson (1978; pp. 339–378).

    Google Scholar 

  • Weinberg, S. (1967), ‘A Model of Leptons,’ Physical Review Letters 19, 1264–1266.

    Google Scholar 

  • Weinberg, S. (1980), ‘Conceptual Foundations of the Unified Theory of Weak and Electromagnetic Interactions,’ Reviews of Modern Physics 52, 515–523.

    Google Scholar 

  • Weiner, C. (ed.) (1977), History of Twentieth Century Physics, Academic Press, New York.

    Google Scholar 

  • Weisskopf, V. (1934a), ‘Über die Selbstenergie des Elektrons,’ Zeitschrift für Physik 89, 27–39.

    Google Scholar 

  • Weisskopf, V. (1934b), ‘Berichtigung zu der Arbeit: Über die Selbstenergie des Elektrons,’ Zeitschrift für Physik 90, 817–818.

    Google Scholar 

  • Weisskopf, V. (1936), ‘Über die Elektrodynamik des Vakuums auf Grund der Quantentheorie des Elektrons,’ Kongelige Danske Videnskabernes Selskab, Matematisk-Fysiske Meddelelser 14, No. 6. [Also in Schwinger (1958).]

  • Weisskopf, V. F. (1939), ‘On the Self-Energy and the Electromagnetic Field of the Electron,’ The Physical Review 56, 72–85. [Also in Schwinger (1958).]

    Google Scholar 

  • Weissmann, G. (1978), ‘Particle Order: A New Fundamental Concept,’ International Journal of Theoretical Physics 17: 747–929.

    Google Scholar 

  • Wentzel, G. (1949), Quantum Theory of Fields, Interscience, New York.

    Google Scholar 

  • Wessels, L. (1979), ‘Schrödingers's Route to Wave Mechanics,’ Studies in History and Philosophy of Science 10, 311–340.

    Google Scholar 

  • Weyl, H. (1931), The Theory of Groups and Quantum Mechanics [translated by H. P. Robertson], Methuen & Co. London. [Also reissued by Dover Publications, (New York) in 1950.]

  • Wheeler, J. A. (1937), ‘On the Mathematical Description of Light Nuclei by the Method of Resonating Group Structure,’ The Physical Review 52, 1107–1127.

    Google Scholar 

  • Wigner, E. (1937), ‘On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei,’ The Physical Review 51, 106–119.

    Google Scholar 

  • Worrall, J. (1978), ‘Research Programs, Empirical Support, and the Duhem Problem: Replies to Criticism,’ in Radnitzky and Andersson (1978; pp. 321–338).

    Google Scholar 

  • Yang, C. N., and Mills, R. L. (1954), ‘Conservation of Isotopic Spin and Isotopic Gauge Invariance,’ The Physical Review 96, 191–195.

    Google Scholar 

  • Yennie, D., and Suura, H. (1957), ‘Higher Order Radiative Corrections to Electron Scattering,’ The Physical Review 105, 1378–1382.

    Google Scholar 

  • Yourgrau, W., and Mandelstam, S. (1968), Variational Principles in Dynamics and Quantum Theory, Dover Publications, New York.

    Google Scholar 

  • Zachariasen, R., and Zemach, C. (1962), ‘Pion Resonances,’ The Physical Review 128, 849–858.

    Google Scholar 

  • Zahar, E. G. (1976), ‘Why Did Einstein's Programme Supersede Lorentz's?’ in Howson (1976; pp. 211–275).

    Google Scholar 

  • Zahar, E. G. (1979), ‘The Mathematical Origins of General Relativity and of Unified Field Theories,’ Lecture Notes on Physics, Vol. 100, Springer-Verlag, Berlin, pp. 370–396.

    Google Scholar 

  • Zahar, E. G. (1980), ‘Einstein, Meyerson and the Role of Mathematics in Physical Discovery,’ The British Journal for the Philosophy of Science 31: 1–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

During the course of this work I have enjoyed the friendship and advice of Dr. Elie Zahar, of the London School of Economics, and of Dr. Michael Redhead, of Chelsea College. They are, of course, not to be held responsible for, nor associated with, any of the nonsense written above, although any good ideas there may be no doubt originated largely with them. Professor J. W. N. Watkins was kind enough to extend to me the status of an academic visitor at the London School of Economics and Professor T. W. B. Kibble made available to me the facilities of Imperial College of Science and Technology. Preliminary versions of parts of this paper were used as the basis of seminars given at the London School of Economics and at Chelsea College in early 1980. The comments and criticisms of the participants were extremely helpful in clarifying many of my ideas. In addition, Professors Allan Franklin, Kristin Shrader-Frechette, Edward Mac Kinnon, Ernan McMullin, and Hans Plendl provided useful criticisms of the first complete draft of this paper. Finally, I wish to express my appreciation to the University of Notre Dame for a Sabbatical leave during which the major portion of this research was completed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cushing, J.T. Models and methodologies in current theoretical high-energy physics. Synthese 50, 5–101 (1982). https://doi.org/10.1007/BF00413723

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413723

Keywords

Navigation