Skip to main content
Log in

Interpreting the Internal Structure of a Connectionist Model of the Balance Scale Task

  • Published:
Brain and Mind

Abstract

One new tradition that has emerged from early research on autonomous robots is embodied cognitive science. This paper describes the relationship between embodied cognitive science and a related tradition, synthetic psychology. It is argued that while both are synthetic, embodied cognitive science is antirepresentational while synthetic psychology still appeals to representations. It is further argued that modern connectionism offers a medium for conducting synthetic psychology, provided that researchers analyze the internal representations that their networks develop. The paper then provides a detailed example of the synthetic approach by showing how the construction (and subsequent analysis) of a connectionist network can be used to contribute to a theory of how humans solve Piaget's classic balance scale task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. R. and Bower, G. H., 1973: Human Associative Memory, Erlbaum, Hillsdale, NJ.

    Google Scholar 

  • Ashby, W. R. (1960). Design for a Brain, 2nd edn., Wiley, New York.

    Google Scholar 

  • Bever, T. G., Fodor, J. A. and Garrett, M., 1968: A formal limitation of associationism, in T. R. Dixon and D. L. Horton (eds.), Verbal Behavior and General Behavior Theory, Prentice-Hall, Englewood Cliffs, NJ, pp. 582-585.

    Google Scholar 

  • Braitenberg, V., 1984: Vehicles: Explorations in Synthetic Psychology, MIT Press, Cambridge, MA.

    Google Scholar 

  • Brooks, R. A., 1999: Cambrian Intelligence: The Early History of the New AI, MIT Press, Cambridge, MA.

    Google Scholar 

  • Chletsos, P. N., de Lisi, R., Turner, G. and McGillicuddy-de Lisi, A.V., 1989: Cognitive assessment of proportional reasoning strategies, J.Res.Dev.Edu. 22, 18-27.

    Google Scholar 

  • Chomsky, N., 1959: A review of B.F. Skinner's Verbal Behavior, Language 35, 26-58.

    Google Scholar 

  • Chomsky, N., 1965: Aspects of the Theory of Syntax, MIT Press, Cambridge, MA.

    Google Scholar 

  • Chomsky, N., 1995: The Minimalist Program, MIT Press, Cambridge, MA.

    Google Scholar 

  • Chomsky, N. and Halle, M., 1991: The Sound Pattern of English, MIT Press, Cambridge, MA.

    Google Scholar 

  • Dawson, M. R. W., 1998: Understanding Cognitive Science, Blackwell, Oxford.

    Google Scholar 

  • Dawson, M. R.W., 2003: Minds and Machines: Connectionism and Psychological Modeling, Blackwell, Oxford.

    Google Scholar 

  • Dawson, M. R.W., Boechler, P.M. and Valsangkar-Smyth, M, 2000: Representing space in a PDP network: Coarse allocentric coding can mediate metric and nonmetric spatial judgments, Spat.Cogn.Comput. 2, 181-218.

    Google Scholar 

  • Dawson, M. R. W., Medler, D. A. and Berkeley, I. S. N., 1997: PDP networks can provide models that are not mere implementations of classical theories, Philos.Psychol. 10, 25-40.

    Google Scholar 

  • Dawson, M. R. W. and Piercey, C. D., 2001: On the subsymbolic nature of a PDP architecture that uses a nonmonotonic activation function, Minds Machines 11, 197-218.

    Google Scholar 

  • Dawson, M. R. W. and Schopflocher, D. P., 1992: Modifying the generalized delta rule to train networks of nonmonotonic processors for pattern classification, Connect.Sci. 4, 19-31.

    Google Scholar 

  • diSessa, A. A., 1993: Toward an epistemology of physics, Cogn.Inst. 10, 105-225.

    Google Scholar 

  • Fahlman, S. E. and Lebiere, C., 1990: The Cascade-Correlation Learning Algorithm (CMU-CS-90-100), School of Computer Science, Carnegie Mellon University, Pittsburgh.

    Google Scholar 

  • Ferretti, R. P. and Butterfield, E. C., 1986: Are children's rule-assessment classifications invariant across instances of problem types? Child Dev. 57, 1419-1428.

    Google Scholar 

  • Ferretti, R. P., Butterfield, E. C., Cahn, A. and Kerkman, D., 1985: The classification of children's knowledge: Development on the balance scale and inclined-plane tasks. J.Exp.Child Psychol. 39, 131-160.

    Google Scholar 

  • Flavell, J. H., 1985: Cognitive Development, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Fodor, J. A., 1975: The Language of Thought, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Grey Walter, W., 1950: An imitation of life, Sci.Am. 182(5), 42-45.

    Google Scholar 

  • Grey Walter, W., 1951: A machine that learns, Sci.Am. 184(8), 60-63.

    Google Scholar 

  • Grey Walter, W., 1963: The Living Brain, W.W. Norton & Co., New York.

    Google Scholar 

  • Hinton, G. E., McClelland, J. and Rumelhart, D., 1986: Distributed representations, in D. Rumelhart and J. McClelland (eds.), Parallel Distributed Processing, Vol. 1, MIT Press, Cambridge, MA. pp. 77-109.

    Google Scholar 

  • Inhelder, B. and Piaget, J., 1958: The Growth of Logical Thinking From Childhood to Adolescence, Basic Books, New York.

    Google Scholar 

  • Jackendoff, R., 1992: Languages of the Mind, MIT Press, Cambridge, MA.

    Google Scholar 

  • Jansen, B. R. J. and van der Mass, H. L. J., 1997: Statistical test of the rule assessment methodology by latent class analysis, Dev.Rev., 17, 321-357.

    Google Scholar 

  • Klahr, D. and Siegler, R. S., 1978: The representation of children's knowledge, in H. W. Reese and L. P. Lipsitt (eds.), Advances in Child Development and Behavior, Vol. 12, Academic Press, New York, pp. 61-116.

    Google Scholar 

  • Kliman, M., 1987: Children's learning about the balance scale. Inst.Sci. 15, 307-340.

    Google Scholar 

  • Laviree, S., Normandeau, S., Roulin, J. L. and Longeot, F., 1987: Siegler's balance scale: A critical analysis of the rule-assessment approach, L'Anee Psychol. 87, 509-534.

    Google Scholar 

  • Leighton, J. P. and Dawson, M. R. W., 2001: A parallel distributed processing model of Wason's selection task, Cogn.Syst.Res. 2, 207-231.

    Google Scholar 

  • Mareschal, D. and Shultz, T. R., 1996: Generative connectionist networks and constructivist cognitive development, Cogn.Dev. 11, 571-603.

    Google Scholar 

  • Marr, D., 1982: Vision, W.H. Freeman, San Francisco.

    Google Scholar 

  • McClelland, J., 1989: Parallel distributed processing: Implications for cognition and development, in R. G. M. Morris (ed.), Parallel Distributed Processing: Implications for Psychology and Neurobiology, Oxford University Press, Oxford, pp. 8-45.

    Google Scholar 

  • McCloskey, M., 1991: Networks and theories: The place of connectionism in cognitive science, Psychol.Sci. 2, 387-395.

    Google Scholar 

  • Minsky, M. and Papert, S., 1988: Perceptrons, 3rd edn., MIT Press, Cambridge, MA.

    Google Scholar 

  • Moravec, H., 1999: Robot, Oxford University Press, New York.

    Google Scholar 

  • Newell, A., 1990: Unified Theories of Cognition, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Normandeau, S., Laviree, S., Roulin, J. L. and Longeot, F., 1989: The balance-scale dilemma: Either the subject or the experimenter muddles through, J.Genet.Psychol. 150, 237-249.

    Google Scholar 

  • Paivio, A., 1969: Mental imagery in associative learning and memory, Psychol.Rev. 76, 241-263.

    Google Scholar 

  • Paivio, A., 1971: Imagery and Verbal Processes, Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Pfeifer, R. and Scheier, C., 1999: Understanding Intelligence, MIT Press, Cambridge, MA.

    Google Scholar 

  • Piaget, P. and Inhelder, B., 1969: The Psychology of the Child, Routledge and Kegan Paul, London.

    Google Scholar 

  • Pylyshyn, Z. W., 1984: Computation and Cognition, MIT Press, Cambridge, MA.

    Google Scholar 

  • Quinlan, J. R., 1993: C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Rumelhart, D. E., Hinton, G. E. and Williams, R. J., 1986: Learning representations by back-propagating errors. Nature 323, 533-536.

    Google Scholar 

  • Sage, S. and Langley, P., 1983: Modeling cognitive development on the balance scale task, in Proc Eighth International Joint Conference on Artificial Intelligence, Vol. 1, 94-96.

    Google Scholar 

  • Schmidt, W. C. and Ling, C. X., 1996: A decision-tree model of balance scale development, Machine Learn. 24, 203-230.

    Google Scholar 

  • Schmidt, W. C. and Shultz, T. R., 1992: An investigation of balance scale success in Paper, in Presented at the Fourteenth Annual Conference of the Cognitive Science Society.

  • Seidenberg, M., 1993: Connectionist models and cognitive theory. Psychol.Sci. 4, 228-235.

    Google Scholar 

  • Shultz, T. R., Mareschal, D. and Schmidt, W. C., 1994: Modeling cognitive development on balance scale phenomena, Machine Learn. 16, 57-86.

    Google Scholar 

  • Shultz, T. R. and Schmidt, W. C., 1992: A cascade-correlation model of balance scale phenomena, in Paper, Presented at the Thirteenth Annual Conference of the Cognitive Science Society.

  • Shultz, T. R., Schmidt, W. C., Buckingham, D. and Mareschal, D., 1995: Modeling cognitive development with a generative connectionist algorithm, in T. J. Simon and G. S. Halford (eds.), Developing Cognitive Competence: New Approaches to Process Modeling, Erlbaum Hillsdale, NJ, pp. 205-261.

    Google Scholar 

  • Siegler, R. S., 1976: Three aspects of cognitive development, Cogn.Psychol. 8, 481-520.

    Google Scholar 

  • Siegler, R. S., 1978: The origins of scientific reasoning, in R. S. Siegler (ed.), Children's Thinking: What Develops? Erlbaum, Hillsdale, NJ.

    Google Scholar 

  • Siegler, R. S., 1981: Developmental sequences within and between concepts. Monogr.Soc.Res.Child Dev. 46 (Whole No. 189).

  • Skinner, B. F., 1957: Verbal Behavior, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Smolensky P., 1988: On the proper treatment of connectionism, Behav.Brain Sci. 11, 1-74.

    Google Scholar 

  • van Maanen, L., Been, P. and Sijtsma, K., 1989: The linear logistic test model and heterogeneity of cognitive strategies, in E. E. Roskam (ed.), Mathematical Psychology in Progress, Springer-Verlag, Berlin, (pp. 267-287).

    Google Scholar 

  • Watson, J. B., 1913: Psychology as the behaviorist views it. Psychol.Rev. 20, 158-177.

    Google Scholar 

  • Wilkening, F. and Anderson, N. H., 1982: Comparison of two rule-assessment methodologies for studying cognitive development and knowledge structures, Psychol.Bull. 92, 215-237.

    Google Scholar 

  • Zimmerman, C. L., 1999: A network interpretation approach to the balance scale task, Unpublished PhD, Thesis, University of Alberta, Edmonton, Canada.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawson, M.R.W., Zimmerman, C. Interpreting the Internal Structure of a Connectionist Model of the Balance Scale Task. Brain and Mind 4, 129–149 (2003). https://doi.org/10.1023/A:1025449410732

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025449410732

Navigation