Skip to main content
Log in

Generation of Highly Resilient to Decoherence Macroscopic Quantum Superpositions via Phase-covariant Quantum Cloning

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this paper we analyze the resilience to decoherence of the Macroscopic Quantum Superpositions (MQS) generated by optimal phase-covariant quantum cloning according to two coherence criteria, both based on the concept of Bures distance in Hilbert spaces. We show that all MQS generated by this system are characterized by a high resilience to decoherence processes. This analysis is supported by the results of recent MQS experiments of N=3.5×104 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert Einstein-Hedwig and Max Born, Briefwechsel 1916–1955. Nymphenburger Verlagshandlung GmbH (1935)

  2. Einstein, A., Podolski, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  MATH  ADS  Google Scholar 

  3. Schrodinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807 (1935)

    Article  ADS  Google Scholar 

  4. Nielsen, M.A., Chuang, I.L.: Quantum noise and quantum operations. In: Quantum Information and Quantum Computation, pp. 353–398. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  5. Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36 (1991)

    Article  Google Scholar 

  6. Zurek, W.H.: Quantum decoherence, Poincarè seminar 2005. Prog. Math. Phys. 48, 1 (2007)

    Article  MathSciNet  Google Scholar 

  7. Dur, W., Simon, C., Cirac, J.I.: Effective size of certain macroscopic quantum superpositions. Phys. Rev. Lett. 89, 210402 (2002)

    Article  ADS  Google Scholar 

  8. Dur, W., Briegel, H.J.: Stability of macroscopic entanglement under decoherence. Phys. Rev. Lett. 92, 180403 (2004)

    Article  ADS  Google Scholar 

  9. Gorin, T., Pineda, C., Seligman, T.H.: Decoherence of an n-qubit quantum memory. Phys. Rev. Lett. 99, 240405 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  10. Schleich, W.: Schrödinger cat states. In: Quantum Optics in Phase Space, pp. 306–313. Wiley, New York (2001)

    Chapter  Google Scholar 

  11. Brune, M., Haroche, S., Raimond, J.M., Davidovich, L., Zagury, N.: Manipulation of photons in a cavity by dispersive atom-field coupling: Quantumnondemolition measurements and generation of “Schrödinger cat” states. Phys. Rev. A 45, 5193 (1992)

    Article  ADS  Google Scholar 

  12. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Ourjoumtsev, A., Tualle-Bruori, R., Laurat, J., Grangier, P.: Generating optical Schrödinger kittens for quantum information processing. Science 312, 83 (2006)

    Article  ADS  Google Scholar 

  14. Ourjoumtsev, A., Jeong, H., Tualle-Bruori, R., Grangier, P.: Generation of optical ‘Schrödinger cats’ from photon number states. Nature 448, 784 (2007)

    Article  ADS  Google Scholar 

  15. De Martini, F., Sciarrino, F., Vitelli, C.: Entanglement test on a microscopic-macroscopic system. Phys. Rev. Lett. 100, 253601 (2008)

    Article  ADS  Google Scholar 

  16. Sciarrino, F., De Martini, F.: Realization of the optimal phase-covariant quantum cloning machine. Phys. Rev. A 72, 062313 (2005)

    Article  ADS  Google Scholar 

  17. Sciarrino, F., De Martini, F.: Implementation of optimal phase-covariant cloning machines. Phys. Rev. A 76, 012330 (2007)

    Article  ADS  Google Scholar 

  18. De Martini, F.: Amplification of quantum entanglement. Phys. Rev. Lett. 81, 2842 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. De Martini, F.: Quantum superposition of parametrically amplified multiphoton pure states. Phys. Lett. A 250, 15 (1998)

    Article  ADS  Google Scholar 

  20. De Martini, F., Sciarrino, F., Secondi, V.: Realization of an optimally distinguishable multiphoton quantum superposition. Phys. Rev. Lett. 95, 240401 (2005)

    Article  Google Scholar 

  21. De Martini, F., Sciarrino, F.: Non-linear parametric processes in quantum information. Progr. Quantum Electron. 29, 165 (2005)

    Article  ADS  Google Scholar 

  22. Nagali, E., De Angelis, T., Sciarrino, F., De Martini, F.: Experimental realization of macroscopic coherence by phase-covariant cloning of a single photon. Phys. Rev. A 76, 042126 (2007)

    Article  ADS  Google Scholar 

  23. Ricci, M., Sciarrino, F., Cerf, N.J., Filip, R., Fiurasek, J., De Martini, F.: Separating the classical and quantum information via quantum cloning. Phys. Rev. Lett. 95, 090504 (2005)

    Article  ADS  Google Scholar 

  24. De Martini, F., Sciarrino, F., Vitelli, C.: Entanglement and non-locality in a micro-macroscopic system. arXiv:0804.0341 (2008)

  25. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Zurek, W.H.: Environment-assisted invariance, entanglement, and probabilities in quantum physics. Phys. Rev. Lett. 90, 120404 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  27. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Bures, D.: An extension of Kakutani’s theorem on infinite product measures to the tensor product of semiinfinite w *algebras. Trans. Am. Math. Soc. 135, 199 (1969)

    MATH  MathSciNet  Google Scholar 

  29. Hubner, M.: Explicit computation of the Bures distance for density matrices. Phys. Lett. A 163, 239 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  30. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. De Martini, F., Sciarrino, F., Spagnolo, N.: Decoherence, environment-induced superselection, and classicality of a macroscopic quantum superposition generated by quantum cloning. Phys. Rev. A 79, 052305 (2009)

    Article  ADS  Google Scholar 

  32. De Martini, F., Sciarrino, F., Spagnolo, N.: Anomalous lack of decoherence of the macroscopic quantum superpositions based on phase-covariant quantum cloning. Phys. Rev. Lett. 103, 100501 (2009)

    Article  Google Scholar 

  33. Loudon, R.: Travelling-wave attenuation. In: The Quantum Theory of Light, pp. 310–318. Oxford University Press, London (2000)

    Google Scholar 

  34. Leonhardt, U.: Quantum statistics of a lossless beam splitter: SU(2) symmetry in phase space. Phys. Rev. A 48, 3265 (1993)

    Article  ADS  Google Scholar 

  35. Schleich, W., Pernigo, M., Le Kien, F.: Nonclassical state from two pseudoclassical states. Phys. Rev. A 44, 2172 (1991)

    Article  ADS  Google Scholar 

  36. Björk, G.: Private communication

  37. Jacobson, J., Bjork, G., Chuang, I., Yamamoto, Y.: Photonic de Broglie waves. Phys. Rev. Lett. 74, 4835 (1995)

    Article  ADS  Google Scholar 

  38. Kapale, K.T., Dowling, J.P.: Bootstrapping approach for generating maximally path-entangled photon states. Phys. Rev. Lett. 99, 053602 (2007)

    Article  ADS  Google Scholar 

  39. Sciarrino, F., Vitelli, C., De Martini, F., Glasser, R.T., Cable, H., Dowling, J.P.: Experimental sub-Rayleigh resolution by an unseeded high-gain optical parametric amplifier for quantum lithography. Phys. Rev. A 77, 012324 (2008)

    Article  ADS  Google Scholar 

  40. Slater, L.J.: The Gauss function. In: Generalized Hypergeometric Functions, pp. 1–39. Cambridge University Press, Cambridge (1966)

    Google Scholar 

  41. Peres, A.: The measuring process. In: Quantum Theory: Methods and Concepts, pp. 373–429. Kluwer Academic, Norwell (1995)

    Google Scholar 

  42. Spagnolo, N., Vitelli, C., Giacomini, S., Sciarrino, F., De Martini, F.: Polarization preserving ultra fast optical shutter for quantum information processing. Opt. Express 16, 17609 (2008)

    Article  ADS  Google Scholar 

  43. Huttner, B., Muller, A., Gautier, J.D., Zbinden, H., Gisin, N.: Unambiguous quantum measurement of nonorthogonal states. Phys. Rev. A 54, 3783 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  44. Spagnolo, N., Vitelli, C., De Angelis, T., Sciarrino, F., De Martini, F.: Wigner-function theory and decoherence of the quantuminjected optical parametric amplifier. Phys. Rev. A 80, 032318 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco De Martini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Martini, F., Sciarrino, F., Spagnolo, N. et al. Generation of Highly Resilient to Decoherence Macroscopic Quantum Superpositions via Phase-covariant Quantum Cloning. Found Phys 41, 492–508 (2011). https://doi.org/10.1007/s10701-010-9445-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9445-z

Keywords

Navigation