Skip to main content
Log in

Between Quantum and Classical Gravity: Is There a Mesoscopic Spacetime?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Between the microscopic domain ruled by quantum gravity, and the macroscopic scales described by general relativity, there might be an intermediate, “mesoscopic” regime, where spacetime can still be approximately treated as a differentiable pseudo-Riemannian manifold, with small corrections of quantum gravitational origin. We argue that, unless one accepts to give up the relativity principle, either such a regime does not exist at all—hence, the quantum-to-classical transition is sharp—, or the only mesoscopic, tiny corrections conceivable are on the behaviour of physical fields, rather than on the geometric structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Notes

  1. One should remind, however, that if quantum field theory can still be applied in the presence of such a signature change, this is phenomenologically constrained by quantum instabilities [10, 11].

References

  1. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  2. Rovelli, C.: Loop quantum gravity: the first 25 years. Class. Quantum Grav. 28, 153002 (2011). E-print arXiv:1012.4707 [gr–qc]

  3. Oriti, D.: The microscopic dynamics of quantum space as a group field theory. In: Murugan, J., Weltman, A., Ellis, G.F.R. (eds.), Foundations of Space and Time, pp. 257–320. Cambridge University Press, Cambridge (2012). E-print arXiv:1110.5606 [hep-th]

  4. Dowker, F.: Introduction to causal sets and their phenomenology. Gen. Relativ. Gravit. 45, 1651 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Sorkin, R.D.: Does locality fail at intermediate length-scales?. In: Oriti, D. (ed.), Approaches to Quantum Gravity, pp. 26–43. Cambridge University Press, Cambridge (2009). E-print gr-qc/0703099

  6. Liberati, S.: Tests of Lorentz invariance: a 2013 update. Class. Quantum Grav. 30, 133001 (2013). E-print arXiv:1304.5795 [gr-qc]

  7. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  8. Brown, H.R.: Physical Relativity. Oxford University Press, Oxford (2005)

    Book  MATH  Google Scholar 

  9. Sonego, S., Pin, M.: Foundations of anisotropic relativistic mechanics. J. Math. Phys. 50, 042902 (2009). E-print arXiv:0812.1294 [gr-qc]

  10. Dray, T., Manogue, C.A., Tucker, R.W.: Particle production from signature change. Gen. Relativ. Gravit. 23, 967 (1991)

  11. White, A., Weinfurtner, S., Visser, M.: Signature change events: a challenge for quantum gravity? Class. Quantum Grav. 27, 045007 (2010). E-print arXiv:0812.3744 [gr-qc]

  12. Baccetti, V., Tate, K., Visser, M.: Inertial frames without the relativity principle. JHEP 1205, 119 (2012). E-print arXiv:1112.1466 [gr-qc]

  13. Rovelli C., Speziale, S.: Lorentz covariance of loop quantum gravity. Phys. Rev. D 83, 104029 (2011). E-print arXiv:1012.1739 [gr-qc]

  14. Gibbons, G.W., Gomis, J., Pope, C.N.: General very special relativity is Finsler geometry. Phys. Rev. D 76, 081701 (2007). E-print arXiv:0707.2174 [hep-th]

  15. Hossenfelder, S.: Phenomenology of space-time imperfection. I. Nonlocal defects. Phys. Rev. D 88, 124030 (2013). E-print arXiv:1309.0311 [hep-ph]

  16. Liberati, S., Sonego S., Visser, M.: Interpreting doubly special relativity as a modified theory of measurement. Phys. Rev. D. 71, 045001 (2005). E-print gr-qc/0410113

  17. Hossenfelder, S.: Bounds on an energy-dependent and observer-independent speed of light from violations of locality. Phys. Rev. Lett. 104, 140402 (2010). E-print arXiv:1004.0418 [hep-ph]

  18. Amelino-Camelia, G., Freidel, L., Kowalski-Glikman J., Smolin, L.: The principle of relative locality. Phys. Rev. D 84, 084010 (2011). E-print arXiv:1101.0931 [hep-th]

  19. Hossenfelder, S.: The soccer-ball problem, SIGMA 10, 074 (2014). E-print arXiv:1403.2080 [gr-qc]

Download references

Acknowledgments

It is a pleasure to thank D. Benincasa and A. Belenchia for illuminating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eolo Di Casola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Casola, E., Liberati, S. & Sonego, S. Between Quantum and Classical Gravity: Is There a Mesoscopic Spacetime?. Found Phys 45, 171–176 (2015). https://doi.org/10.1007/s10701-014-9859-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9859-0

Keywords

Navigation