Skip to main content
Log in

Geometro-stochastic quantization of a theory for extended elementary objects

Foundations of Physics Aims and scope Submit manuscript

Abstract

The geometro-stochastic quantization of a gauge theory based on the (4,1)-de Sitter group is presented. The theory contains an intrinsic elementary length parameter R of geometric origin taken to be of a size typical for hadron physics. Use is made of a soldered Hilbert bundle ℋ over curved spacetime carrying a phase space representation of SO(4, 1) with the Lorentz subgroup related to a vierbein formulation of gravitation. The typical fiber of ℋ is a resolution kernel Hilbert space ℋ\(_{\bar \eta }^{(\rho )} \) constructed in terms of generalized coherent states\(\bar \eta \) ρ related to the principal series of unitary irreducible representations of SO(4, 1), namely de Sitter horospherical waves for spinless particles characterized by the parameter ρ. The framework is, finally, extended to a quantum field-theoretical formalism by using bundles with Fock space fibers constructed from ℋ\(_{\bar \eta }^{(\rho )} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. W. Heisenberg,Phys. Today 29(3), 32 (1976).

    Google Scholar 

  2. W. Drechsler,Fortschr. Phys. 32, 449 (1984).

    Google Scholar 

  3. W. Drechsler,J. Math. Phys. 26, 41 (1985).

    Google Scholar 

  4. W. Drechsler and W. Thacker,Class. Quantum Gravit. 4, 291 (1987).

    Google Scholar 

  5. W. Drechsler,Class. Quantum Gravit. 6, 623 (1989).

    Google Scholar 

  6. W. Drechsler,Found. Phys. 19, 1479 (1989).

    Google Scholar 

  7. E. Prugovečki,Stochastic Quantum Mechanics and Quantum Spacetime (Reidel, Dordrecht, 1984; corr. printing 1986).

    Google Scholar 

  8. E. Prugovečki,Nuovo Cimento A 97, 597, 837 (1987);100, 827 (1988);101, 853 (1989);102, 881 (1989).

    Google Scholar 

  9. E. Prugovečki,Class. Quantum Gravit. 4, 1659 (1987).

    Google Scholar 

  10. E. Prugovečki,Found. Phys. Lett. 2, 81, 163, 403 (1989).

    Google Scholar 

  11. E. Prugovečki and S. Warlow,Found. Phys. Lett. 2, 409 (1989);Rep. Math. Phys. 28, 105 (1989).

    Google Scholar 

  12. W. Drechsler,Fortschr. Phys. 23, 607 (1976).

    Google Scholar 

  13. W. Drechsler,Found. Phys. 7, 629 (1977).

    Google Scholar 

  14. W. Drechsler and R. Sasaki,Nuovo Cimento 46, 527 (1978).

    Google Scholar 

  15. E. Prugovečki,Found. Phys. 21, 93 (1991).

    Google Scholar 

  16. E. P. Wigner, inQuantum Theory and Measurement, J. A. Wheeler and H. Zurek, eds. (Princeton University Press, Princeton, 1983), pp. 260–314.

    Google Scholar 

  17. E. H. Kronheimer and R. Penrose,Proc. Cambridge Philos. Soc. 63, 481 (1967).

    Google Scholar 

  18. J. Ehlers, E. A. E. Pirani, and A. Schild, inGeneral Relativity, L. O'Raifeartaigh, ed. (Clarendon Press, Oxford, 1972).

    Google Scholar 

  19. J. Ehlers and A. Schild,Commun. Math.Phys. 32, 119 (1973).

    Google Scholar 

  20. N. M. H. Woodhouse,J. Math. Phys. 14, 495 (1973).

    Google Scholar 

  21. J. Ehlers, inGeneral Relativity and Cosmology, B. K. Sachs, ed. (Academic Press, New York, 1973).

    Google Scholar 

  22. A. Einstein,Geometrie und Erfahrung; English translation inReadings on the Philosophy of Science, H. Feigl and M. Brodbeck, eds. (Appleton-Century-Crofts, New York, 1953), pp. 189–194.

    Google Scholar 

  23. H. Salecker and E. P. Wigner,Phys. Rev. 109, 571 (1958).

    Google Scholar 

  24. W. Drechsler,Fortschr. Phys. 38, 63 (1990).

    Google Scholar 

  25. M. Born,Rev. Mod. Phys. 21, 463 (1949).

    Google Scholar 

  26. R. R. Aldingeret al., Phys. Rev. D. 28, 3020 (1983).

    Google Scholar 

  27. A. Böhmet al., Int. J. Mod. Phys. 3, 1103 (1988).

    Google Scholar 

  28. I. M. Gel'fand, M. I. Graev, and N. Ya. Vilenkin,Generalized Functions, Vol. 5 (Academic Press, London, 1966), Chap. V.

    Google Scholar 

  29. S. Helgason,Lie Groups and Symmetric Spaces, in Battelle Rencontres, C. M. De Witt and J. A. Wheeler, eds. (Benjamin, New York, 1968).

    Google Scholar 

  30. S. Helgason,Topics in Harmonic Analysis on Homogeneous Spaces (Birkhäuser, Basel, 1981).

    Google Scholar 

  31. W. Drechsler and E. M. Mayer,Fiber Bundle Techniques in Gauge Theories (Lecture Notes in Physics, Vol. 67) (Springer, Heidelberg, 1977).

    Google Scholar 

  32. A. Perelomov,Generalized Coherent States and Their Applications (Springer, Heidelberg, 1986).

    Google Scholar 

  33. W. Rossmann,J. Funct. Anal. 30, 448 (1978).

    Google Scholar 

  34. R. S. Strichartz,J. Funct. Anal. 12, 341 (1972).

    Google Scholar 

  35. W. Drechsler, inGroup Theoretical Methods in Physics (Proceedings, Austin, 1978), W. Beiglböck, A. Böhm, and E. Takasugi eds. (Lecture Notes in Physics, Vol. 94) (Springer, Heidelberg, 1979), p. 98.

    Google Scholar 

  36. E. Prugovečki,Quantum Geometry (Kluwer, Dordrecht, to appear).

  37. S. Kobayashi,Can. J. Math. 8, 145 (1956).

    Google Scholar 

  38. Ch. Ehresmann,Colloque de Topologie (espaces fibrés), Bruxelles, 1950, p. 29.

  39. H. P. Künzle and C. Duval,Class. Quantum Gravit. 3, 957 (1986).

    Google Scholar 

  40. S. Kobayashi and K. Nomizu,Foundations of Differential Geometry, Vol. I (Wiley, New York, 1963).

    Google Scholar 

  41. S. T. Ali and E. Prugovečki,Acta Appl. Math. 6, 1 (1986).

    Google Scholar 

  42. J. A. Brooke and E. Prugovečki,Nuovo Cimento A 89, 237 (1984).

    Google Scholar 

  43. J. A. Wheeler,Geometrodynamics (Academic Press, New York, 1962).

    Google Scholar 

  44. C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973).

    Google Scholar 

  45. N. N. Bogolubov, A. A. Logunov, and I. T. Todorov,Introduction to Axiomatic Quantum Field Theory (Benjamin, Reading, Massachusetts, 1975).

    Google Scholar 

  46. F. A. Berezin,The Method of Second Quantization (Academic, New York, 1966).

    Google Scholar 

  47. R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    Google Scholar 

  48. C. Itzykson and J.-B. Zuber,Quantum Field Theory (McGraw-Hill, New York, 1980).

    Google Scholar 

  49. N. A. Chernikov and E. A. Tagirov,Ann. Inst. H. Poincaré A 9, 109 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NSERC Research Grant No. A5206.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drechsler, W., Prugovečki, E. Geometro-stochastic quantization of a theory for extended elementary objects. Found Phys 21, 513–546 (1991). https://doi.org/10.1007/BF00733257

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00733257

Keywords

Navigation