Skip to main content
Log in

Essential self-adjointness: implications for determinism and the classical–quantum correspondence

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

It is argued that seemingly “merely technical” issues about the existence and uniqueness of self-adjoint extensions of symmetric operators in quantum mechanics have interesting implications for foundations problems in classical and quantum physics. For example, pursuing these technical issues reveals a sense in which quantum mechanics can cure some of the forms of indeterminism that crop up in classical mechanics; and at the same time it reveals the possibility of a form of indeterminism in quantum mechanics that is quite distinct from the indeterminism of state vector collapse. More generally, the examples considered indicate that the classical–quantum correspondence is more intricate and delicate than is generally appreciated. The aim of the article is to give a series of examples that reveal why the technical issues about self-adjointness are relevant to the philosophy of science and that help to make the issues accessible to philosophers of science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert D. (1998) Quantum mechanics and experience. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Ax, J., & Kochen, S. (1999). Extension of quantum mechanics to individual systems. quant-ph/9905077.

  • Ballentine L.E., Yang Y., Zubin J.P. (1994) Inadequacy of Ehrenfest’s theorem to characterize the classical regime. Physical Review A, 50: 2854–2859

    Article  Google Scholar 

  • Belot G., Earman J., Ruetsche L. (1999) The Hawking information loss paradox: The anatomy of a controversy. British Journal for the Philosophy of Science 50: 189–229

    Article  Google Scholar 

  • Berezanskii, Ju. M. (1968). Expansions in eigenfunctions of self-adjoint operators, transactions of mathematical monographs (Vol. 17). Providence, RI: American Mathematical Society.

  • Blank J., Exner P., Havlíĉek M. (1994) Hilbert space operators in quantum physics. AIP Press, New York

    Google Scholar 

  • Bojowald M. (2001) Absence of a singularity in loop quantum cosmology. Physical Review Letters 86: 5227–5230

    Article  Google Scholar 

  • Bub J. (1997) Interpreting the quantum world. Cambridge University Press, Cambridge

    Google Scholar 

  • Chernoff P.R. (1973) Essential self-adjointnes of powers of generators of hyperbolic equations. Journal of Functional Analysis 12: 401–414

    Article  Google Scholar 

  • d’Espagnat B. (1976) Conceptual foundations of quantum mechanics. Reading, MA: W. A. Benjamin

    Google Scholar 

  • Dickson W.M. (1998) Quantum chance and non-locality. Cambridge University Press, Cambridge

    Google Scholar 

  • Earman J. (1986) A primer on determinism. D. Reidel., Dordrecht

    Google Scholar 

  • Earman J. (2007) Aspects of determinism in modern physics. In: Butterfield J., Earman J.(eds) Handbook of the philosophy of science: Philosophy of physics. Elsevier/North-Holland, Amsterdam

    Google Scholar 

  • Haag R. (1992) Local quantum physics. Springer-Verlag, New York

    Google Scholar 

  • Helliwell T.M., Konkowski D.A., Arndt V. (2003) Quantum singularity in quasiregular spacetimes, as indicated by Klein–Gordon, Maxwell and Dirac fields. General Relativity and Gravitation 35: 79–96

    Article  Google Scholar 

  • Hepp K. (1973) The classical limit for quantum mechanics correlation functions. Communications in Mathematical Physics 35: 265–277

    Article  Google Scholar 

  • Horowitz G., Marolf D. (1995) Quantum probes of spacetimes singularities. Physical Review D 52: 5670–5675

    Article  Google Scholar 

  • Hughes R.I.G. (1989) The structure and interpretation of quantum mechanics. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Isham C.J. (1984) Topological and global aspects of quantum theory. In: DeWitt B.S., Stora R.(eds) Relativity, groups and topology II. North-Holland, Amsterdam, pp 1059–1290

    Google Scholar 

  • Ishibashi A., Wald R.M. (2003) Dynamics of non-globally-hyperbolic static spacetimes II: General analysis of prescriptions for dynamics. Classical and Quantum Gravity 20: 3815–3826

    Article  Google Scholar 

  • Ishibashi A., Wald R.M. (2004) Dynamics of non-globally-hyperbolic static spacetimes III: Anti-de Sitter spacetime. Classical and Quantum Gravity 21: 2981–3014

    Article  Google Scholar 

  • Jammer M. (1974) The philosophy of quantum mechanics: The interpretations of quantum mechanics in historical perspective. Wiley, New York

    Google Scholar 

  • Johnson, C. V., Peet, A. W., & Polchinski, J. (2000). Gauge theory and the excision of repulsion singularities. Physical Review D, 61, 08600-1-11

    Google Scholar 

  • Kato T. (1995) Perturbation theory for linear operators. Springer-Verlag, Berlin

    Google Scholar 

  • Kay B.S., Studer U.M. (1991) Boundary conditions for quantum mechanics on cones and fields around cosmic strings. Communications in Mathematical Physics 139: 103–139

    Article  Google Scholar 

  • Konkowski D.A., Helliwell T.M. (2001) Quantum singularity of quasiregular spacetimes. General Relativity and Gravitation 33: 1131–1136

    Article  Google Scholar 

  • Konkowski D.A., Helliwell T.M., Wieland C. (2004) Quantum singularity of Levi–Civita spacetimes. Classical and Quantum Gravity 21: 265–272

    Article  Google Scholar 

  • Konkowski, D. A., Helliwell, T. M., & Wieland, C. (2004b). Quantum singularities. gr-qc/0408036.

  • Koopman B.O. (1931) Hamiltonian systems and transformations in Hilbert space. Proceedings of the National Academy of Sciences, 17: 315–318

    Article  Google Scholar 

  • Landsman K. (2007) Between classical and quantum. In: Butterfield J., Earman J.(eds) Handbook of the philosophy of science: Philosophy of physics. Elsevier/North-Holland, Amsterdam

    Google Scholar 

  • Lanford O.E. (1975) Time evolution of large classical systems. In: Moser J.(eds) Dynamical systems, theory and applications. Lecture notes in physics (Vol. 38). Springer-Verlag, New York, pp 1–111

    Google Scholar 

  • Laraudogoitia, J. P. (2001). Supertasks. In The Stanford encyclopedia of philosophy. http://plato.stanford.edu/archives/win2001/entries/spacetime-supertasks/.

  • Norton, J. D. (2003). Causation as folk science. In Philosophers’ Imprint. http://www.philosophersimprint.org/003004.

  • Penrose R. (1979) Singularities and time-asymmetry. In: Hawking S.W., Israel W.(eds) General relativity: An Einstein centenary survey. Cambridge University Press, Cambridge, pp 639–679

    Google Scholar 

  • Penrose R. (1998) The question of cosmic censorship. In: Wald R.(eds) Black holes and relativistic stars. University of Chicago Press, Chicago, IL, pp 103–122

    Google Scholar 

  • Radin C. (1977) The dynamical instability of nonrelativistic many-body problem. Communications in Mathematical Physics 54: 69–79

    Article  Google Scholar 

  • Rauch J., Reed M. (1973) Two examples illustrating the differences between classical and quantum mechanics. Communications in Mathematical Physics 29: 105–111

    Article  Google Scholar 

  • Reed M., Simon B. (1975) Methods of mathematical physics: Fourier analysis, self-adjointness (Vol. II). Academic Press, New York

    Google Scholar 

  • Richmeyer R.D. (1985) Principles of advanced mathematical physics (Vol. 1). Springer-Verlag, New York

    Google Scholar 

  • Robson M.A. (1994) Geometric quantization on homogeneous spaces and the meaning of “inequivalent” quantizations. Physics Letters B 335: 383–387

    Article  Google Scholar 

  • Robson M.A. (1996) Geometric quantization on reduced cotangent bundles. Journal of Geometry and Physics 19: 207–245

    Article  Google Scholar 

  • Rosenberg, J. (2004). A selective history of the Stone–von Neumann theorem. In Operator algebras, quantization, and non-commutative geometry, contemporary mathematics (Vol. 365, pp. 331–353). Providence, RI: American Mathematical Society.

  • van Fraassen B.C. (1991) Quantum mechanics: An empiricist view. Clarenden Press, Oxford

    Google Scholar 

  • Wald R.M. (1980) Dynamics in nonglobally hyperbolic, static spacetimes. Journal of Mathematical Physics 21: 2802–2805

    Article  Google Scholar 

  • Wald R.M. (1994) Quantum field theory in curved spacetime and black hole thermodynamics. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Woodhouse N.M.J. (1991) Geometric quantization. Clarenden Press, Oxford

    Google Scholar 

  • Xia X. (1992) Existence of noncollision singularities in the N-body problem. Annals of Mathematics 135: 411–468

    Article  Google Scholar 

  • Zurek W.H. (1998) Decoherence, chaos, quantum–classical correspondence, and the algorithmic arrow of time. Physica Scripta 76: 186–198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Earman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Earman, J. Essential self-adjointness: implications for determinism and the classical–quantum correspondence. Synthese 169, 27–50 (2009). https://doi.org/10.1007/s11229-008-9341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-008-9341-7

Keywords

Navigation