Skip to main content
Log in

Haag’s Theorem and its Implications for the Foundations of Quantum Field Theory

  • Published:
Erkenntnis Aims and scope Submit manuscript

Abstract

Although the philosophical literature on the foundations of quantum field theory recognizes the importance of Haag’s theorem, it does not provide a clear discussion of the meaning of this theorem. The goal of this paper is to make up for this deficit. In particular, it aims to set out the implications of Haag’s theorem for scattering theory, the interaction picture, the use of non-Fock representations in describing interacting fields, and the choice among the plethora of the unitarily inequivalent representations of the canonical commutation relations for free and interacting fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arageorgis A., Earman J. and Ruetsche L. (2002). Weyling the Time Away: The Non-Unitary Implementability of Quantum Field Dynamics on Curved Spacetime. Studies in the History and Philosophy of Modern Physics 33: 151–184

    Article  Google Scholar 

  • Bain J. (2000). Against Particle/Field Duality: Asymptotic Particle States and Interpolating Fields in Interacting QFT (Or: Who’s Afraid of Haag’s Theorem?). Erkenntnis 53: 375–406

    Article  Google Scholar 

  • Barton G. (1963). Introduction to Advanced Field Theory. Interscience Publishers, New York

    Google Scholar 

  • Baumann K. (1987). On Relativistic Irreducible Quantum Fields Fulfilling the CCR. Journal of Mathematical Physics 28: 697–704

    Article  Google Scholar 

  • Baumann K. (1988). On Canonical Irreducible Quantum Field Theories Describing Bosons and Fermions. Journal of Mathematical Physics 29: 1225–1230

    Article  Google Scholar 

  • Bjorken J. D. and Drell S. D. ( 1965). Relativistic Quantum Fields. McGraw-Hill, New York

    Google Scholar 

  • Bogoliubov N. N., Logunov A. A. and Todorov I. T. ( 1975). Introduction to Axiomatic Quantum Field Theory. W. A. Benjamin, Reading MA

    Google Scholar 

  • Chaiken J. M. (1968). Number Operators for Representations of the Canonical Commutation Relations. Communications in Mathematical Physics 8: 164–184

    Article  Google Scholar 

  • Dell’Antonio G. F. and Doplicher S. (1967). Total Number of Particles and Fock Representation. Journal of Mathematical Physics 8: 663–666

    Article  Google Scholar 

  • Earman, J.: 2004, ‘Curie’s Principle and Spontaneous Symmetry Breaking’, International Studies in Philosophy of Science 18, 173–198

    Google Scholar 

  • Emch G. (1972). Algebraic Methods in Statistical Mechanics and Quantum Field Theory. Wiley-Interscience, New York

    Google Scholar 

  • Florig M. and Summers S. J. (2000). Further Representations of the Canonical Commutation Relations. Proceedings of the London Mathematical Society 80: 451–490

    Article  Google Scholar 

  • Fraser, D.: 2005, Philosophical Implications of the Treatment of Interactions in QFT, PhD thesis, University of Pittsburgh

  • Friedrichs K. (1953). Mathematical Aspects of the Quantum Theory of Fields. Interscience, New York

    Google Scholar 

  • Gårding L. and Wightman A. S. (1954). Representations of the Commutation Relations. Proceedings of the National Academy of Sciences 40: 622–626

    Article  Google Scholar 

  • Ginibre J. and Velo G. (1970). Renormalization of a Quadratic Interaction in the Hamiltonian Formalism. Communications in Mathematical Physics 18: 65–81

    Article  Google Scholar 

  • Glimm J. and Jaffe A. (1968). A λ ϕ4 Field Theory Without Cutoffs. I. Physical Review 176: 1945–1951

    Article  Google Scholar 

  • Glimm J. and Jaffe A. (1970a). The λ(ϕ4)2 Quantum Field Theory Without Cutoffs: II. The Field Operators and the Approximate Vacuum. Annals of Mathematics 91: 362–401

    Article  Google Scholar 

  • Glimm J. and Jaffe A. (1970b). The λ(ϕ4)2 Quantum Field Theory Without Cutoffs: III. The Physical Vacuum. Acta Mathematica 125: 203–267

    Article  Google Scholar 

  • Greenberg O. W. (1959). Haag’s Theorem and Clothed Operators. Physical Review 115: 706–710

    Article  Google Scholar 

  • Greenberg O. W. and Licht A. L. (1963). Quantum Field-Theory Model Whose Truncated Vacuum Expectations Values Vanish Beyond Some Order. Journal of Mathematical Physics 4: 613–614

    Article  Google Scholar 

  • Haag R. (1955). On Quantum Field Theories. Det Kongelige Danske Videnskabernes Selskab, Matematisk-fysiske Meddelelser 29(12): 1–37

    Google Scholar 

  • Haag R. (1958). Quantum Field Theories with Composite Particles and Asymptotic Conditions. Physical Review 112: 669–673

    Article  Google Scholar 

  • Hall D. and Wightman A. S. (1957). A Theorem on Invariant Analytic Functions with Applications to Relativistic Quantum Field Theory. Det Kongelige Danske Videnskabernes Selskab, Matematisk-fysiske Meddelelser 31(5): 1–41

    Google Scholar 

  • Heathcote A. (1989). Theory of Causality: Causality = Interaction (as Defined by a Suitable Quantum Field Theory). Erkenntnis 31: 77–108

    Article  Google Scholar 

  • Hepp K. (1969). Théorie de la Renormalisation, Lecture Notes in Physics,. Springer-Verlag, Berlin

    Google Scholar 

  • Huggett N. and Weingard R. (1994). Interpretations of Quantum Field Theory. Philosophy of Science 61: 370–388

    Google Scholar 

  • Jaffe A. (1969). Whither Axiomatic Field Theory?. Reviews of Modern Physics 41: 576–580

    Article  Google Scholar 

  • Jaffe A. (1999). ‘Where does Quantum Field Theory fit into the Big Picture?’. In: Cao, T. Y. (eds) Conceptual Foundations of Quantum Field Theory, pp 136–147. Cambridge University Press, New York, pp.

    Google Scholar 

  • Jost R. (1961). ‘Properties of Wightman Functions’. In: Caianiello, E. R. (eds) Lectures on Field Theory and the Many-Body Problem, pp 127–145. Academic Press, New York, pp.

    Google Scholar 

  • Kay B. (1978). Linear Spin-Zero Quantum Fields in External Gravitational and Scalar Fields. I. A One Particle Structure for the Stationary Case. Communications in Mathematical Physics 62: 55–70

    Article  Google Scholar 

  • Kay B. and Wald R. M. (1991). Theorems and the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Spacetimes with a Bifurcate Killing Horizon. Physics Reports 207: 49–136

    Article  Google Scholar 

  • Klauder J. R. (2000). Beyond Conventional Quantization. Cambridge University Press, Cambridge

    Google Scholar 

  • Koshmanenko V. D. (1978). Scattering Theory with Different State Spaces of Perturbed and Free System. Reports on Mathematical Physics 14: 185–206

    Article  Google Scholar 

  • Koshmanenko V. D. (1979). Haag–Ruelle Scattering Theory as Scattering Theory in Different Spaces. Theoretical and Mathematical Physics 38: 109–119

    Article  Google Scholar 

  • Kronz, F. and Lupher, T.: 2003, ‘Unitarily Inequivalent Representations in Algebraic Quantum Theory’, pre-print

  • Lévy-Leblond J.-M. (1967). Galilean Quantum Field Theories and a Ghostless Lee Model. Communications in Mathematical Physics 4: 157–176

    Article  Google Scholar 

  • Lévy-Leblond J.-M. (1971). ‘Galilei group and Galilean invariance’. In: Loebl, E. M. (eds) Group Theory and its Applications, pp 222–299. Academic Press, New York, pp.

    Google Scholar 

  • Lopuzanski J. (1961). A Criterion for the Free Character of Fields. Journal of Mathematical Physics 2: 743–747

    Article  Google Scholar 

  • Lopuzanski J. (1965). On the Unitary Inequivalent Representations in the Quantum Field Theory and the Many Body Problem. Acta Physica Hungarica 19: 29–44

    Article  Google Scholar 

  • Manceau J. and Verbeure A. (1968). Quasi-Free States of the C.C.R.–Algebra and Bogoliubov Transformations. Communications in Mathematical Physics 9: 293–302

    Article  Google Scholar 

  • Peskin M. E. and Schroder D. V. ( 1995). An Introduction to Quantum Field Theory. Addison-Wesley, Reading, MA

    Google Scholar 

  • Pohlmeyer K. (1969). The Jost-Schroer Theorem for Zero-Mass Fields. Communications in Mathematical Physics 12: 204–211

    Article  Google Scholar 

  • Powers R. T. (1967). Absence of Interaction as a Consequence of Good Untraviolet Behavior in the Case of a Local Fermi Field. Communications in Mathematical Physics 4: 145–156

    Article  Google Scholar 

  • Prugovečki E. (1981). Quantum Mechanics in Hilbert Space. Academic Press, New York

    Google Scholar 

  • Reed M. and Simon B. ( 1975). Methods of Modern Mathematical Physics, Vol. II, Fourier Analysis, Self-Adjointness. Academic Press, New York

    Google Scholar 

  • Reed M. and Simon B. ( 1979). Methods of Modern Mathematical Physics, Vol. III, Scattering Theory. Academic Press, New York

    Google Scholar 

  • Rivasseau V. (2000). Constructive Field Theory and Applications: Perspectives and Open Problems. Journal of Mathematical Physics 41: 3764–3775

    Article  Google Scholar 

  • Roman P. (1969). Introduction to Quantum Field Theory. John Wiley and Sons, New York

    Google Scholar 

  • Rosenberg J. (2004). A Selective History of the Stone–von Neumann Theorem. Contemporary Mathematics 365: 331–353

    Google Scholar 

  • Ruelle D. (1962). On the Asymptotic Condition in Quantum Field Theory. Helvetica Physica Acta 35: 147–163

    Google Scholar 

  • Ruetsche L. (2002). Interpreting Quantum Field Theory. Philosophy of Science 69: 348–378

    Article  Google Scholar 

  • Schweber S. S. (1962). An Introduction to Relativistic Quantum Field Theory. Harper and Rowe, New York

    Google Scholar 

  • Sklar L. (2000). Theory and Truth. Oxford University Press, New York

    Google Scholar 

  • Streater R. F. ( 1975). ‘Outline of Axiomatic Relativistic Quantum Field Theory’. Reports on Progress in Physics 38: 771–846

    Article  Google Scholar 

  • Streater R. F. and Wightman A. S. ( 1964). PCT, Spin and Statistics and all That. W. A. Benjamin, New York

    Google Scholar 

  • Sterman G. (1993). An Introduction to Quantum Field Theory. Cambridge University Press, Cambridge

    Google Scholar 

  • Streit L. (1969). A Generalization of Haag’s Theorem. Nuovo Cimento LXIIA(3): 673–680

    Google Scholar 

  • Summers S. J. (2001). ‘On the Stone–von Neumann Uniqueness Theorem and Its Ramifications’. In: Rédei, M. and Stöltzner, M. (eds) John von Neumann and the Foundations of Quantum Physics, pp 135–152. Kluwer Academic, Dordrecht, pp.

    Google Scholar 

  • Teller P. (1995). An Interpretative Introduction to Quantum Field Theory. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Ticciati R. (1999). Quantum Field Theory for Mathematicians. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Van Hove L. (1952). Les difficultés de divergences pour un modèle particulier de champ quantifié. Physica 18(3): 145–159

    Article  Google Scholar 

  • Verch R. (1994). Local Definiteness, Primitivity and Quasiequivalence of Quasi-Free Hadamard Quantum States in Curved Spacetime. Communications in Mathematical Physics 160: 507–536

    Article  Google Scholar 

  • Wald R. M. (1994). Quantum Field Theory on Curved Spacetime and Black Hole Thermodynamics. University of Chicago Press, Chicago

    Google Scholar 

  • Weinberg S. (1995). The Quantum Theory of Fields, Vol. I, Foundations. Cambridge University Press, Cambridge UK

    Google Scholar 

  • Weinberg S. (1996). The Quantum Theory of Fields, Vol. II, Modern Applications. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Weinless M. (1969). Existence and Uniqueness of the Vacuum for Linear Quantized Fields. Journal of Functional Analysis 4: 350–379

    Article  Google Scholar 

  • Wightman A. S. (1967). `Introduction to Some Aspects of the Relativistic Dynamics of Quantized Fields'. In: Lévy, M. (eds) Cargèse Lectures in Theoretical Physics, High Energy Electromagnetic Interactions and Field Theory., pp 171–291. Gordon and Breach, New York

    Google Scholar 

  • Wightman A. S. and Schweber S. (1955). Configuration Space Methods in Relativistic Quantum Field Theory. I. Physical Review 98: 812–837

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Earman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Earman, J., Fraser, D. Haag’s Theorem and its Implications for the Foundations of Quantum Field Theory. Erkenntnis 64, 305–344 (2006). https://doi.org/10.1007/s10670-005-5814-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10670-005-5814-y

Keywords

Navigation