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1. Introduction
Some philosophers of mathematics, after Quine, claim that the use of mathematical models is indispensable in scientific language and conclude from this that we ought to believe in the existence of some mathematical entities. Let us call this the indispensability argument for mathematical realism.

A recent debate on the indispensability argument has centred on the role that mathematical models play in science. In an effort to refute Quine, some have argued that mathematical models are only used in science instrumentally; they are descriptive devices of physical phenomena that may or may not be indispensable but are, nevertheless, not ontologically committing.

In opposition, supporters of the indispensability argument claim that mathematical models play another in science. Their contention is that, more than merely describe, mathematical models also explain physical phenomena. Consequently, mathematical models cannot be treated instrumentally and ought to be endowed with ontological rights.

I examine in this paper this debate on the role of mathematical models in science and critically assess the explanatory account advanced by the latter camp. I reveal some assumptions of the explanatory account and how they can be exploited to defeat it. I side with the descriptive view of mathematical models and suggest an anti-realist account of why mathematical models appear to play an explanatory role in science.

2. Mathematical Models as Descriptive Frameworks: Balaguer’s Account
The first descriptive account of mathematical models is due to Balaguer. Balaguer rejects the indispensability argument by advancing two separate counterarguments against the alleged existence of mathematical entities: the implausibility of the existence of causally inert objects and the descriptive role of mathematical models in science.

What we shall be interested in, here, is the second counterargument. It should be noted, though, that Balaguer’s first counterargument has come under attack because, it is claimed, it assumes a principle of causal efficiency (Balaguer, 1998:136)
. As we shall see shortly, this principle also has implications on Balaguer’s descriptive view of mathematical models.

According to Balaguer, the use of mathematical models in scientific language can be accurately described in instrumental terms:

(TA) Empirical theories use mathematical-object talk only in order to construct theoretical apparatuses (or descriptive frameworks) in which to make assertions about the physical world. (Balaguer, 1998:137)
Balaguer claims that (TA) is true because science uses mathematics strictly as a description of certain features or behaviours of the physical world. The role of the mathematical machinery is to clarify and simplify our scientific theories by using the machinery. It does not confer, however, to mathematical models any ontological rights.

The question, then, is whether the representational role of mathematics is itself indispensable in science. Balaguer believes that it is not and that what explains the utility of mathematics in science is the homomorphism (i.e., the structural similarity) that exists between physical and mathematical structures (Balaguer, 1998:138).

To motivate his view, Balaguer asserts that all mathematical applications in science, including indispensable ones, can be accounted for by (TA) (Balaguer, 1998:112). He claims that statements such as “the physical system S is forty degrees Celsius,” which apparently quantify over mathematical entities, are not really about mathematical entities but about a resemblance that exists between a certain physical structure and a mathematical structure (Balaguer, 1998:138-139)
.

Balaguer also asserts that the denial of (TA) is untenable. For, if the Platonist tries to deny (TA), this would entail that mathematical entities play some sort of causal role in science and this contradicts the accepted premise that mathematical entities are acausal:

The only way to deny (TA) is to maintain that the reason we refer to mathematical objects in empirical science is that they are important components, in some sense, of the facts that empirical science is ultimately concerned with… But we’ve already seen [] that this view is untentable [because mathematical entities are causally inert]. (Balaguer, 1998:138)
Notice how this, too, falls back on the principle of causal efficacy. If so, then the same attacks laid against Balaguer’s first counterargument can also be laid against this one. Moreover, we will see in section 4 a claim that mathematical entities may be “important components” all the while being causally inert.

Because of these difficulties, it seems that Balaguer’s account cannot succeed without first divorcing it from the principle of causal efficacy. But let us, instead, turn to another descriptive account that does not assume the principle.

3. Mathematical Models as Descriptive Frameworks: Leng’s Account
Leng’s account of the role of mathematical models in science exploits a dichotomy in Quine’s ontology of the mathematical realm. She tries to show that on Quine’s own view, no mathematical model is genuinely indispensable in scientific language.

Quine claims that we ought to believe in the existence of only those mathematical entities that are necessary for the mathematical models used in science. Mathematical models that are not used (or usable) in science, such as those of cardinality larger than א2, are part of so-called “recreational mathematics”. Recreational mathematical, according to Quine, ought not to be part of the mathematical realist’s ontology (Quine, 1986:400).

Leng claims that a proper understanding of the role of mathematics in science clearly shows that all mathematical models are recreational and that we ought not believe in the existence of any mathematical entities.

She starts out by noting Sober’s point against the indispensability argument that when deciding between competing scientific theories, their mathematical underpinnings are never put in the question; all candidate theories make equal use of mathematical models. If so, then  the claim that the existence of mathematical entities can be obtained from the empirical confirmation of scientific theories is erroneous (Sober, 1993:45-46).

Leng agrees with Sober that mathematics is never really put into question when used in science and further claims that when a scientific theory fails, its mathematical component is, at the most, judged inadequate and simply replaced by a “more adequate” mathematical model (Leng, 2002:412). And, like Balaguer, Leng illustrates her account with an example:

Consider the paradigm case of a mathematical theory which did not do what was expected of it: Catastrophe Theory. This area of mathematics was heralded as “The most important development since calculus” (Newsweek), but its initial promise proved to be a great deal of hot air. The result? Catastrophe Theory became a much less popular area of research, but no one would claim that the mathematics of Catastrophe Theory had been falsified by its magnificent scientific failures. (Leng, 2002:407)
Catastrophe theory is no isolated case, Leng claims. Science is rife with examples of mathematical models that were abandoned because they simply do not fit the physical phenomenon in question. This is in fact, according to Leng, how scientists use mathematical theories: when scientists quantify over mathematical entities, they do not imply ontological commitment and only use the mathematical models recreationally.

Leng concludes from this that if we take Quine’s distinction of recreational mathematics seriously, then all mathematical models fall in this category and, thus, lack any ontological rights (Leng, 2002:411).
It has been questioned whether we can make such a conclusion without addressing two key points. First, it is not clear if Leng’s appeal to Sober is legitimate as some have argued that Sober’s contrastive view of empiricism is fundamentally incompatible with Quine’s (Colyvan, 2006). This is a methodological point of contention that I shall not delve into, here, as it does not concern the role of mathematical models in science. Instead, I take as a starting point Leng’s assertion that mathematical models are used in science instrumentally; as a models of physical phenomena.

Second, for Leng’s (and Balaguer’s) account of mathematical models as representational tools in science to work, it has to be shown that mathematics does not, in fact, another role. Colyvan, precisely, takes this point as a weakness in Leng’s account. He claims that mathematical models also play an explanatory role in science.
4. The Explanatory Role of Mathematical Models
Colyvan argues that a complete account of mathematics in science must acknowledge the explanatory role of mathematical models. In his view, more than to represent, certain physical phenomena can only be explained by the particular features of mathematical models. And Leng’s and Balaguer’s representational accounts are ill-suited to accommodate this aspect of mathematics.

While Colyvan concedes that mathematical models are sometimes used in science to model physical phenomena, he denies that this is all that mathematics is for. He claims that mathematical models can “directly” contribute to an explanation of physical phenomena:

On [Leng’s] account of the relationship between mathematics and science, mathematics provides nothing more than a convenient set of representational tools. But such an account seems to seriously understate the role of mathematics in science… mathematics is more than a mere representational tool and the modelling picture is wrong. After all, if mathematics is contributing directly to explanations, it is hard to see how any scientific realist can accept the explanations yet deny the truth of the mathematics. (Colyvan, forthcoming:§4)
I will come to disagree with Colyvan that mathematical models can explain, but let us start by examining what and how mathematics is supposed to explain. Colyvan supports this claim with a host of examples that, according to him, show how only mathematics can explain a particular physical phenomenon. Consider, for instance, his antipodal weather patterns example:

We discover at some time t0 there are two antipodal points p1 and p2 on the earth’s surface with exactly the same temperature and barometric pressure. What is the explanation of this coincidence? (Colyvan, 2001:49)
Colyvan argues that, while historical data and our knowledge of earth’s weather patterns may give us a detailed causal explanation of how each point came to have that specific temperature and barometric pressure separately, this does not explain why these points are antipodal or why there should be any such points at all.

The explanation of this latter fact, according to Colyvan, resides in a corollary of the Borsuk-Ulam theorem in topology. The corollary states that (if earth is a perfect sphere and temperature and barometric pressure are continuous functions) there are always two antipodal points on the planet’s surface that have the same temperature and barometric pressure:
[The phenomenon] is due to a theorem of algebraic topology that states that for any time t there are antipodal points on the surface of the earth that simultaneously have the same temperature and barometric pressure. This theorem, or more correctly the proof of this theorem, provides the missing part of the causal explanation. It guarantees that there will be two such antipodal points at any time, and, furthermore, the explanation makes explicit appeal to non-causal entities such as continuous functions and spheres. (Colyvan, 2001:49)
This is, of course, a little misleading. The Borsuk-Ulam corollary is not about planets and weather, but about spheres and functions. As it stands, there is an immediate worry about the equivocation in Colyvan’s example. Baker may be expressing similar worries when he criticises Colyvan’s examples (Baker, 2005:227-228). Baker claims that the geometric aspect of the example makes it ambiguous what its subject-matter is.

But there are more problems with the explanatory account.

5. Why Mathematical Models Do Not Explain
For the explanatory account to go through, mathematical models ought to be truly explanatory. In particular, we would expect them to satisfy at least three uncontroversial conditions: (1) the explanation has to be true (2) the explanation has to be somehow “bottom-level” and (3) the explanation has to conform to the assumed theory of explanation.

It is easy to defend the three conditions. If the mathematical explanation is not a true explanation, then Colyvan’s explanatory account fails. If the mathematical explanation can be reduced to some other explanation, then the mathematical explanation does not require the ontological commitment to mathematical entities. Finally, if the explanation does not conform to a theory of explanation that is acceptable to the scientific realist then it is clearly question begging.

Colyvan claims that mathematics can “directly” explain certain phenomena such as earth’s antipodal weather patterns. However, this leaves one question unanswered: how do we know that this is a true explanation? In general, there is no way to determine whether a particular mathematical model is, on its own, a true explanation of physical phenomena. To take a page from Leng’s modelling view, we can construct a mathematical model for any physical phenomenon we care to examine so as to match the available empirical data.
Take for example a pre-Uranus astrophysicist who is interested in explaining the orbital distance of the planets in the solar system. This astrophysicist may erroneously come to believe that Bode’s law is a true explanation of why some planet is at a such and such distance from the sun. Not only that, the later scientific discovery of Uranus may even further confirm the “predictive power” of Bode’s law as it, too, conforms to the Bode equation.

Of course what we know today is that Bode’s law does not explain anything and is a mere curiosity ("Bode's Law," 2007). But had our astrophysics failed to make further planetary discoveries, we would have no means to distinguish the supposedly true Borsuk-Ulam explanation from the patently false Bode one.

Freedman illustrates this using another example:
I sometimes have a nightmare about Kepler. Suppose a few of us were transported back in time to the year 1600, and were invited by the Emperor Rudolph II to set up an Imperial Department of Statistics in the court of Prague. Despairing of those circular orbits, Kepler enrolls in our department. We teach him the general linear model. Least squares, dummy variables, everything. He goes back to work, fits the best circular orbit for Mars by least squares, puts in a dummy variable for the exceptional observation – and publishes. And that’s the end, right there in Prague at the beginning of the 17th century. (Freedman, 1985:359) cited in (Humphreys, 2004:133)
Divorced from empirical evidence, no mathematical explanations can be falsified. What has come to be falsified, in the case of Bode’s law, is not the Bode equation itself but that the equation is somehow connected (or relevant) to the distribution of planets in the solar system.

In general, I deny that the mathematical facts, alone, explain “directly”. If it turns out that the Borsuk-Ulam corollary is not a genuine explanation of the antipodal weather points, this would not falsify it, it would simply mean that the corollary is not connected or relevant to Earth’s weather patterns.

6. Bottom-Level Explanations in Science
Colyvan’s main thesis is that mathematical models or structures can serve as genuine bottom-level explanations of physical phenomena. But, as I have tried to show above, there are problems with the genuine claim. Now I wish to contest the bottom-level claim. By bottom-level, I mean that no other explanation can substitute for the aforementioned mathematical explanation.

This is an important premise for Colyvan. Without it, he cannot claim that mathematical explanation leads us to believe in the existence of mathematical entities. The question, therefore, is whether there is such a thing as a bottom-level explanation in science. Musgrave, for one, has a dim view of bottom-level explanations:

[S]ince we can never be sure that we have got hold of the essences of things, we should never put a stop to possibly fruitful further investigation by claiming that we have. This methodological argument has force whether or not we can make sense of the idea that things have essential properties, or more generally, of the idea that some explanatory principles might be ultimate. (Musgrave, 1999:13)
But even if we admit that mathematical explanations are not “bottom-level”, does this mean that they, nonetheless, possess some explanatory power? Musgrave does not think so:

… are all scientific theories explanatory in the sense that they have at least some explanatory uses (figure in some explanatory derivations)? … A [] likely candidate for laws which have no explanatory uses are numerical formula which merely summarize facts, such as Bode’s Law or Balmer’s formula. One can derive the mean distance of Uranus from Bode’s Law together with the information that Uranus is the seventh planet from the sun: but this does not explain why Uranus has the mean distance that it does, nor can I think of any explanatory deductions in which Bode’s Law figures essentially. (Musgrave, 1999:5)
So, unless there is something that is “essentially” Borsuk-Ulam-like about earth, the Borsuk-Ulam corollary has no explanatory use except as a mere summary of facts. In this case, the facts are that at any point of time, there are two antipodal weather points on the planet’s surface. And so, even if the Borsuk-Ulam corollary is a genuine explanation, this is not the same as being a bottom-level explanation.

In any case, it is uncharacteristic for scientists to take mathematical explanations, even coincidental ones like Bode’s law, at face value. More typically, they will try to find intrinsic physical explanation. For example, some astrophysicists now believe that Bode’s law is possibly due to the orbital resonance pattern of planets. One may then imagine scientists also preferring an explanation of the antipodal weather in strictly physical terms. And, still, there is nothing bottom level in those physical explanations.

7. Finding an Adequate Theory of Explanation
Let us look now at Colyvan’s theory of explanation. Colyvan endorses what he terms as a broad theory of causation and explanation that ought to appeal to everyone:

For obvious reasons I wish to be as broad-minded as possible about both causation and explanation. I will assume only that an explanation must be enlightening – it must make the phenomena being explained less mysterious. (Colyvan, 2001:47)
Mathematical explanations are, therefore, legitimate because they make certain physical phenomena less mysterious. But is this the right way to go about defining scientific explanations? There is one two objections here.

The first (mild) objection is this: how can an explanation positing the existence of platonic entities that are abstract and acausal make a physical phenomenon less mysterious? Arguably, in Colyvan’s own lights, the indispensability of these entities can only deepen the alleged mystery.
The second and, much stronger, objection is to whether scientific investigation is the venue of solving mysteries. Clearly, such a requirement cannot be relieved by scientific explanations; scientific explanations invariably end up referring to some unexplainable brute fact of the world. And this fact is no less mysterious or puzzling that the phenomenon to be explained (Musgrave, 1999:8).

In contrast to Colyvan, Baker is enthusiastic about the explanatory role of mathematics in science but does not rely on a broad notion of explanation. He tries to gauge the adequacy and merit of mathematical explanations against the leading theories explanation:

What needs to be checked … is that the mathematical component of the explanation is explanatory in its own right, rather than functioning as a descriptive or calculational framework for the overall explanation. This is difficult to do without having in hand some substantive general account of explanation.  (Baker, 2005:234)
He argues that none of the three leading accounts of explanation can be used to reject mathematical explanations outright. Namely, he claims that the causal account clearly is begs the question since mathematical explanations are, by definition, non-causal (Baker, 2005:234). He also claims that the pragmatic account accepts mathematical explanations unequivocally and the deductive-nomological account accepts mathematical explanations once we extend the laws of nature to include mathematics (Baker, 2005:235).

Baker concludes that no matter what theory of explanation we adopt, if we commit to the principle of inference to the best explanation then cases such as earth’s antipodal weather points give us good reason to favour mathematical explanations and, consequently, endorse mathematical realism:

I have argued that there are genuine mathematical explanations of physical phenomena... If this is right, then applying inference to the best explanation [] yields the conclusion that numbers exist. (Baker, 2005:236)
I disagree with Baker, however, because of what I perceive as two important difficulties in his argument. First, Baker does not give us reason to include mathematics as part of the laws of nature, except for observing hat some mathematical formulae have the general structure of natural laws (Baker, 2005:235). This is misleading and begs the question. Many statements that refer to entities that do not exist have the form of general laws of nature and if mathematical antirealists believe that mathematical entities do not exist, then admitting mathematical statements as laws of nature begs the question. The argument is, precisely, about whether or not we ought to believe in the existence of such entities.
Secondly, Baker’s appeal to the principle of the inference to the best explanation is gratuitous. The question is not whether non-mathematical explanations are second-best to mathematical explanation. The whole premise of Colyvan’s examples and his explanatory account is that there is no other explanation for the physical phenomenon. The only explanation (not the best explanation) is a mathematical explanation.

[[Indeed, even if we assume, for the argument’s sake, that a mathematical explanation is actually pitted against a physical explanation. The principle of inference to the best explanation would inevitably side with the former for the simple reason that a physical explanation manages to satisfy all three accounts of explanations examined by Baker without any caveats.]]
8. A Nominalistic Explanation of the Antipodal Weather Patterns
If the position I have argued for so far is correct then mathematical models do not explain physical phenomena. This, in turn, raises the questions of why is it that mathematical models appear to explain physical phenomena; if it is not the models themselves that do the explaining, then what is it that does?

I suggest, here, that the physical phenomena have physical explanations.  The reason why mathematical models appear to explain is the subtle equivocation when mathematical entities are confounded with physical entities. As we have seen in the antipodal weather points, this happens when earth is confused with a physical sphere.

What ought to be identified as the explanatory component in the case of the antipodal weather points is not the mathematical model simpliciter but the impure function that links the Borsuk-Ulam corollary to the phenomena (i.e. the mapping from earth to a perfect sphere and from temperature and barometric pressure to continuous functions).

By merely asserting that earth is spherical and that temperature and pressure and continuous function-like we can obtain that earth satisfies the Borsuk-Ulam corollary via straightforward deductive steps. In other words, all the explanatory work is done by the impure function. So, while this is not immediately obvious, it is simply the particular shape of the planet (and the specific nature of temperature and pressure) that explains the existence of antipodal weather points.

Is this explanation better than a direct mathematical explanation? I believe it is. It satisfies all three accounts of explanation examined by Baker without having to relax the definition of laws of nature. And even if we use the principle of inference to the best explanation, there is nothing that makes it any less preferable than a mathematical explanation.

Indeed, I claim that my account is more explanatory than mathematical explanations since mathematical explanations do not explain anything without having to implicitly posit the validity of the impure function that links physical objects to mathematical models. What is truly in question is whether the impure function reflects a genuine relationship as in the case of the antipodal weather points, or not (e.g. Bode’s law).

9. Conclusion
I endorse the view that mathematical structures are used in science as models or descriptive devices. Scientists do not take the ontological commitments of those models seriously and simply judged to be adequate or inadequate to accurately represent the physical phenomenon under investigation.

I reject the claim that mathematical models also play an explanatory role in science. I take issue with the validity of the explanatory framework that this account of mathematics assumes. In addition, I raise doubt that mathematical models can be empirically shown to be genuine explanations of physical phenomena.

I suggest that what may be explanatory in mathematics is the impure function that connects our physical reality to the mathematical realm. And that this impure function, what may be termed (after Balaguer) a homomorphism between physical and mathematical structures, is what is truly at play. However, more work needs to be down to show that this homomorphism does not require the appeal to abstract entities.

If this is right, then scientific realists who sympathise with Quine’s doctrines ought to take an antirealist stance towards mathematical models and their entities since no mathematical model is genuinely indispensable in scientific language.
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� The principle is defended by Armstrong and others. See, for example, � ADDIN EN.CITE <EndNote><Cite><Author>Armstrong</Author><Year>1989</Year><RecNum>106</RecNum><Pages>7-8</Pages><MDL><REFERENCE_TYPE>1</REFERENCE_TYPE><REFNUM>106</REFNUM><AUTHORS><AUTHOR>Armstrong, David M.</AUTHOR></AUTHORS><YEAR>1989</YEAR><TITLE>A Combinatorial Theory of Possibility</TITLE><PLACE_PUBLISHED>Cambridge</PLACE_PUBLISHED><PUBLISHER>Cambridge University Press</PUBLISHER></MDL></Cite></EndNote>�(Armstrong, 1989:7-8)�


� Balaguer does not explain what is it for a physical structure to resemble a mathematical structure. In particular, no word is given about what a resemblance is and where one ought to be a realist about resemblances. I try to give an anti-realist account of resemblance elsewhere <ref?>, I shall leave this question unexamined here.





