Skip to main content

Wave–Particle Duality in Quantum Optics

  • Chapter
  • First Online:
EPSA Philosophical Issues in the Sciences

Abstract

Philosophers of science are inclined to think that wave–particle duality is an obsolete concept, because according to quantum mechanics there are neither waves nor particles in a classical sense. But in physical practice, wave–particle duality is alive. The concept is crucial in order to understand the recent which-way experiments of quantum optics. First, several aspects of the concept will be sketched. Then I explain why the experimenters say that they prepare waves but detect particles. Indeed, their pragmatic attitude helps to understand a prominent thought experiment of Scully, Englert and Walther and the which-way experiments that realised it. Finally, I discuss a simple polarizer experiment. The experiment shows that no realistic interpretation of particles can cope with wave–particle duality, whereas the causal relevance of the quantum waves can not be denied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Falkenburg (2007), the argument is presented in more detail.

  2. 2.

    Born (1926b, 803). My translation.

  3. 3.

    See Jammer (1966, 41).

  4. 4.

    Born (1926a, 51); translation from Wheeler and Zurek (1983, 54).

  5. 5.

    Bohr (1949).

  6. 6.

    Feynman et al. (1965, 1–4 to 1–9).

  7. 7.

    In addition, the quantum state is not particle-like because the photon number is not well-defined. See below Section 4.4.

  8. 8.

    Scully et al. (1991, 111).

  9. 9.

    See Falkenburg (2007, pp. 296–305).

  10. 10.

    See Hacking (1983, 22–25).

References

  • Bohm D (1952) A suggested interpretation of the quantum theory in terms of “hidden variables”, I & II. Phys Rev 85:166–179, 180–193

    Article  Google Scholar 

  • Bohr N (1927) Como lecture. The quantum postulate and the recent development of atomic theory. Nature 121(1928):580–590. In Bohr’s collected works 6, pp 109–158

    Google Scholar 

  • Bohr N (1949) Discussion with Einstein on epistemological problems of atomic physics. In: Schilpp PA (ed) Albert Einstein: Philosopher–scientist. Evanston, IL, pp 115–150

    Google Scholar 

  • Born M (1926a) Zur Quantenmechanik der Stoßvorgänge. Z Physik 37:863–867

    Article  Google Scholar 

  • Born M (1926b) Quantenmechanik der Stoßvorgänge. Z Physik 38:803–827

    Article  Google Scholar 

  • Compton AH (1923) A quantum theory of the scattering of X-rays by light elements. Phys Rev 21:483–502

    Article  Google Scholar 

  • Davisson C, Germer LH (1927) Diffraction of electrons by a crystal of nickel. Phys Rev 30:705–740

    Article  Google Scholar 

  • de Broglie L (1923) Ondes et Quanta. Comptes rendus 177:507–510

    Google Scholar 

  • Dürr S et al (1998a) Origin of quantum-mechanical complementarity probed by ‘which-way’ experiment in an atom interferometer. Nature 395:33–37

    Article  Google Scholar 

  • Dürr S et al (1998b) Fringe visibility and which-way information in an atom interferometer. Phys Rev Lett 81(26):5705–5709

    Article  Google Scholar 

  • Dürr S, Rempe G (2000a) Wave–particle duality in an atom interferometer. Adv Atom Mol Optic Phys 42:29–71

    Article  Google Scholar 

  • Dürr S, Rempe G (2000b) Can wave–particle duality be based on the uncertainty relation? Am J Phys 68(11):1021–1024

    Article  Google Scholar 

  • Einstein A (1905) Über einen die Erzeugung und Verwandlung des Lichts betreffenden heuristischen Gesichtspunkt. Annalen der Physik 17:132–148

    Article  Google Scholar 

  • Einstein A (1916) Zur Quantentheorie der Strahlung. First published in 1916. Repr.: Physikal. Zeitschrift 18:121–128

    Google Scholar 

  • Einstein A et al (1935) ( = EPR paper) Can quantum mechanical description of reality be considered complete? Phys Rev 47:777–780

    Article  Google Scholar 

  • Falkenburg B (2007) Particle metaphysics. A critical account of subatomic reality. Springer, Berlin

    Google Scholar 

  • Feynman RP, et al (1965) The Feynman lectures on physics, vol III. Addison-Wesley, Reading, MA

    Google Scholar 

  • Hacking I (1983) Representing and intervening. Cambridge University Press, Cambridge

    Google Scholar 

  • Heisenberg W (1925) Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Physik 33:879–893

    Article  Google Scholar 

  • Heisenberg W (1927) Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Physik 43:172–198

    Article  Google Scholar 

  • Jammer M (1966) The conceptual development of quantum mechanics. McGraw-Hill, New York

    Google Scholar 

  • Ketterle W (2003) Public talk on the Bose–Einstein condensate. Annual meeting of the DPG (German Physical Society), Hannover

    Google Scholar 

  • Schrödinger E (1926) Quantisierung als Eigenwertproblem I-IV. Annalen der Physik 79:361–376, 489–527. Annalen der Physik 80:734–756. Annalen der Physik 81:109–139

    Article  Google Scholar 

  • Scully MO et al (1991) Quantum optical tests of complementarity. Nature 351:111–116

    Article  Google Scholar 

  • von Neumann J (1932) Mathematische Grundlagen der Quantenmechanik. Springer, Berlin

    Google Scholar 

  • Walborn St. P et al (2003) Quantum erasure. Am Sci 91:336–343

    Google Scholar 

  • Wheeler JA, Zurek WH (1983) Quantum theory and measurement. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Wigner EP (1939) On Unitary Representations of the Inhomogeneous Lorentz Group. Annals of Mathematics 40:149–204

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Falkenburg, B. (2010). Wave–Particle Duality in Quantum Optics. In: Suárez, M., Dorato, M., Rédei, M. (eds) EPSA Philosophical Issues in the Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3252-2_4

Download citation

Publish with us

Policies and ethics