Skip to main content
Log in

Kant on geometry and spatial intuition

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

I use recent work on Kant and diagrammatic reasoning to develop a reconsideration of central aspects of Kant’s philosophy of geometry and its relation to spatial intuition. In particular, I reconsider in this light the relations between geometrical concepts and their schemata, and the relationship between pure and empirical intuition. I argue that diagrammatic interpretations of Kant’s theory of geometrical intuition can, at best, capture only part of what Kant’s conception involves and that, for example, they cannot explain why Kant takes geometrical constructions in the style of Euclid to provide us with an a priori framework for physical space. I attempt, along the way, to shed new light on the relationship between Kant’s theory of space and the debate between Newton and Leibniz to which he was reacting, and also on the role of geometry and spatial intuition in the transcendental deduction of the categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allison H. E. (1973) The Kant-Eberhard controversy. John Hopkins University Press, Baltimore

    Google Scholar 

  • Allison H. E. (1983) Kant’s transcendental idealism. Yale University Press, New Haven

    Google Scholar 

  • Carson E. (1997) Kant on intuition in geometry. Canadian Journal of Philosophy 27: 489–512

    Google Scholar 

  • De Pierris G. (2001) Geometry in the metaphysical exposition. In: Gerhardt V., Horstmann R.-P., Schumacher R. (eds) Kant und die Berliner Aufklärung, Band 2. de Gruyter, Berlin, pp 197–204

    Google Scholar 

  • Friedman M. (1992) Kant and the exact sciences. Harvard University Press, Cambridge

    Google Scholar 

  • Friedman M. (2000) Geometry, construction, and intuition in Kant and his successors. In: Sher G., Tieszen R. (eds) Between logic and intuition: Essays in honor of Charles Parsons. Cambridge University Press, Cambridge, pp 186–218

    Chapter  Google Scholar 

  • Friedman M. (2003) Transcendental philosophy and mathematical physics. Studies in History and Philosophy of Science 34: 29–43

    Article  Google Scholar 

  • Friedman M. (2005) Kant on science and experience. In: Mercer C., O’Neill E. (eds) Early modern philosophy: Mind, matter, and metaphysics. Oxford University Press, Oxford, pp 262–275

    Google Scholar 

  • Friedman M. (2009) Newton and Kant on absolute apace: From theology to transcendental philosophy. In: Bitbol M., Kerszberg P., Petitot J. (eds) Constituting objectivity: Transcendental perspectives on modern physics. Springer, Berlin, pp 35–50

    Google Scholar 

  • Kant, I. (1902-). Kant’s gesammelte Schriften. Berlin: de Gruyter.

  • Manders K. (2008a) Diagram-based geometrical practice. In: Mancosu P. (ed) The philosophy of mathematical practice. Oxford University Press, Oxford, pp 65–79

    Chapter  Google Scholar 

  • Manders K. (2008b) The Euclidean diagram. In: Moncosu P. (ed) The philosophy of mathematical practice. Oxford University Press, Oxford, pp 80–133

    Chapter  Google Scholar 

  • Newton I. (2004). Isaac Newton: Philosophical writings. In Janiak A. (Ed.). Cambridge: Cambridge University Press.

  • Parsons C. (1992) The transcendental aesthetic. In: Guyer P. (ed) The Cambridge companion to Kant. Cambridge University Press, Cambridge, pp 62–100

    Chapter  Google Scholar 

  • Shabel L. (1998) Kant on the ‘symbolic construction’ of mathematical concepts. Studies in History and Philosophy of Science 29: 589–621

    Article  Google Scholar 

  • Shabel L. (2003) Mathematics in Kant’s critical philosophy: Reflections on mathematical practice. New York and London, Routledge

    Google Scholar 

  • Shabel L. (2006) Kant’s philosophy of mathematics. In: Guyer P. (ed) The Cambridge companion to Kant and modern philosophy. Cambridge University Press, Cambridge, pp 94–128

    Chapter  Google Scholar 

  • Sutherland D. (2004) The role of magnitude in Kant’s critical philosophy. Canadian Journal of Philosophy 34: 411–442

    Google Scholar 

  • Sutherland D. (2006) Kant on arithmetic, algebra, and the theory of proportion. Journal of the History of Philosophy 44: 33–558

    Article  Google Scholar 

  • Tarski A. (1959) What is elementary geometry?. In: Henkin L., Suppes P., Tarski A. (eds) The Axiomatic method, with special reference to geometry and physics. North-Holland, Amsterdam, pp 16–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Friedman.

Additional information

An earlier version of this paper was presented at the second meeting of the Stanford-Paris workshop on diagrams in mathematics in the Fall of 2008 from which the present special issue is drawn, and it was originally inspired by a paper presented by Marco Panza on diagrammatic reasoning in Euclid at the first meeting of the Stanford-Paris workshop in the Fall of 2007. Panza’s paper in the present issue is based, in turn, on his earlier presentation. Since Panza’s paper, as it now appears, has since been substantially revised, I have taken the opportunity substantially to revise my paper as well, and, in particular, I have chosen to take as my main target work of the Kant scholar Lisa Shabel that is very much in the spirit of Kenneth Manders’s original discussion of the Euclidean diagram (note 1 below). I am also indebted, in this connection, to comments on the earlier version of my paper from Jeremy Avigad. For helpful comments on the penultimate version of this paper I am further indebted to Daniel Sutherland and to an anonymous referee for Synthese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, M. Kant on geometry and spatial intuition. Synthese 186, 231–255 (2012). https://doi.org/10.1007/s11229-012-0066-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-012-0066-2

Keywords

Navigation