Skip to main content
Log in

On generalized electromagnetism and Dirac algebra

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Using a framework of Dirac algebra, the Clifford algebra appropriate for Minkowski space-time, the formulation of classical electromagnetism including both electric and magnetic charge is explored. Employing the two-potential approach of Cabibbo and Ferrari, a Lagrangian is obtained that is dyality invariant and from which it is possible to derive by Hamilton's principle both the symmetrized Maxwell's equations and the equations of motion for both electrically and magnetically charged particles. This latter result is achieved by defining the variation of the action associated with the cross terms of the interaction Lagrangian in terms of a surface integral. The surface integral has an equivalent path-integral form, showing that the contribution of the cross terms is local in nature. The form of these cross terms derives in a natural way from a Dirac algebraic formulation, and, in fact, the use of the geometric product of Dirac algebra is an essential aspect of this derivation. No kinematic restrictions are associated with the derivation, and no relationship between magnetic and electric charge evolves from the (classical) formulation. However, it is indicated that in bound states quantum mechanical considerations will lead to a version of Dirac's quantization condition. A discussion of parity violation of the generalized electromagnetic theory is given, and a new approach to the incorporation of this violation into the formalism is suggested. Possibilities for extensions are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. A. M. Dirac,Proc. Roy. Soc. (London)A133, 60 (1931);Phys. Rev. 74, 817 (1948).

    Google Scholar 

  2. V. I. Strazhev and L. M. Tomil'chik,Fiz. Elem. Chast. At. Yad. 4, 187 (1973), [Sov. J. Part. and Nucl. 4, 78 (1973)]; Yu. D. Usachev,Fiz. Elem. Chast. At. Yad. 4, 225 (1973), [Sov. J. Part. and Nucl. 4, 94 (1973)]; E. Ferrari, “Formulations of Electrodynamics with Magnetic Monopoles,”Tachyons, Monopoles, and Related Topics, ed. E. Recami (North-Holland, Amsterdam, 1978), pp. 203–225.

    Google Scholar 

  3. N. Cabibbo and E. Ferrari,Nuovo Cimento 23, 1147 (1962); see also M. Y. Han and L. C. Biedenharn,Nuovo Cimento 2A, 544 (1971).

    Google Scholar 

  4. D. Rosenbaum,Phys. Rev. 147, 891 (1966); F. Rohrlich,Phys. Rev. 150, 1104 (1966); J. Godfrey,Nuovo Cimento 71A, 134 (1982).

    Google Scholar 

  5. T. T. Wu and C. N. Yang,Phys. Rev. D 14, 437 (1976); see also R. A. Brandt and J. R. Primack,Phys. Rev. D 15, 1798 (1977).

    Google Scholar 

  6. H. J. Lipkin and M. Peshkin,Phys. Lett. B 179, 109 (1986).

    Google Scholar 

  7. M. A. de Faria-Rosa, E. Recami, and W. A. Rodriques, Jr.,Phys. Lett B 173, 233 (1986).

    Google Scholar 

  8. M. A. de Faria-Rosa, E. Recami, and W. A. Rodriques, Jr.,Phys. Lett. B 188, 511 (1987).

    Google Scholar 

  9. A. Maria, Jr., E. Recami, A. Rodriques, Jr., and M. A. F. Rosa, “Magnetic Monopoles without Strings by Kähler-Clifford Algebras,” R.T. No. 14/87, State University of Campinas, Sao Paulo, Brazil.

  10. D. Hestenes,Space-Time Algebra (Gordon & Breach, New York, 1966).

    Google Scholar 

  11. D. G. B. Edelen,Ann. Phys. 112, 366 (1978). This topic is also covered by D. G. B. Edelen,Applied Exterior Calculus (Wiley, New York, 1985), Ch. 9.

    Google Scholar 

  12. J. D. Jackson,Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), p. 596.

    Google Scholar 

  13. E. Katz,Am. J. Phys. 33, 306 (1965).

    Google Scholar 

  14. F. Rohrlich,Classical Charged Particles (Addison-Wesley, Reading, Massachusetts, 1965), Sec. 6–9.

    Google Scholar 

  15. L. Landau and E. Lifshitz,The Classical Theory of Fields (Addison-Wesley, Reading, Massachusets, 1951), p. 42.

    Google Scholar 

  16. Ibid.,, p. 56.

    Google Scholar 

  17. Ibid.,, p. 57.

    Google Scholar 

  18. J. D. Jackson,op. cit.,, p. 607.

    Google Scholar 

  19. L. Landau and E. Lifshitz,op. cit.,, p. 22.

    Google Scholar 

  20. O. Heaviside,Electromagnetic Theory (Chelsea, London, 1893).

  21. S. Shanmugadhasan,Can. J. Phys. 30, 218 (1952).

    Google Scholar 

  22. C. R. Hagen,Phys. Rev. 140, B804 (1965).

    Google Scholar 

  23. F. Brackx, R. Delanghe, and F. Sommen,Clifford Analysis (Pitman, Marshfield, Massachusetts, 1982); D. Hestenes and G. Sobczyk,Clifford Algebra to Geometric Calculus (Reidel, Dordrecht, 1984).

    Google Scholar 

  24. J. D. Bjorken and S. D. Drell,Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964), Appendix A.

    Google Scholar 

  25. Ibid., p. 25.

    Google Scholar 

  26. D. Hestenes,op. cit., p. 15.

    Google Scholar 

  27. M. Riesz,Clifford Numbers and Spinsors, Lecture Series No. 38, The Institute for Fluid Dynamics and Applied Mathematics, University of Maryland (1958).

  28. J. D. Bjorken and S. D. Drell,op. cit., p. 26.

  29. L. Landau and E. Lifshitz,op. cit., p. 20.

  30. D. Hestenes, “A Unified Language for Mathematics and Physics,”Clifford Algebras and Their Applications in Mathematical Physics, J. S. R. Chisholm and A. K. Common, eds. (Reidel, Dordrecht, 1986), pp. 1–23.

    Google Scholar 

  31. L. Landau and E. Lifshitz,op. cit., “ p. 66.

    Google Scholar 

  32. M. Reisz,op. cit., “ Chap. V.

    Google Scholar 

  33. J. D. Jackson,op. cit., “ p. 605.

    Google Scholar 

  34. L. Landau and E. Lifshitz,op. cit., “ p. 47.

    Google Scholar 

  35. C. W. Misner and J. A. Wheeler,Ann. Phys. 2, 525 (1957), who provide references to earlier works. This reference is also reprinted in the book: J. A. Wheeler,Geometrodynamics (Academic Press, New York, 1962), Sec. III, pp. 225–307.

    Google Scholar 

  36. G. Y. Rainich,Trans. Am. Math. Soc. 27, 106 (1925).

    Google Scholar 

  37. E. M. Purcell and N. F. Ramsay,Phys. Rev. 78, 807 (L) (1950); N. F. Ramsay,Phys. Rev. 109, 225 (L), (1958).

  38. N. Pintacuda,Nuovo Cimento 29, 216 (1963); J. M. Leinaas,Nuovo Cimento 15A, 740 (1973); R. Mignami,Phys. Rev. D 13, 2437 (1976).

    Google Scholar 

  39. H. B. G. Casimir,On the Interaction Between Atomic Nuclei and Electrons, 2nd Ed. (Freeman, San Francisco, 1963), p. viii.

    Google Scholar 

  40. C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973), p. 368.

    Google Scholar 

  41. R. V. Tevikyan,Zh. Eksp. Teor. Fiz. (U.S.S.R)50, 911 (1966) [Sov. Phys. JETP 23, 606 (1966)].

    Google Scholar 

  42. L. D. Landau and E. M. Lifshitz,The Classical Theory of Fields, 4th rev. Engl. edn. (Pergamon, New York, 1975), p. 21.

    Google Scholar 

  43. N. Salingaros,J. Math. Phys. 22, 1919 (1981).

    Google Scholar 

  44. D. Fryberger,Found. Phys. 13, 1059 (1983).

    Google Scholar 

  45. C. Quigg,Gauge Theories of the Strong, Weak, and Electromagnetic Interactions (Benjamin/Cummings, Reading, Massachusetts, 1983).

    Google Scholar 

  46. R. P. Feynman,Rev. Mod. Phys. 20, 367 (1948); R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    Google Scholar 

  47. D. H. Kobe,Ann. of Phys. (N.Y.)123, 381 (1979); See also T. T. Wu and C. N. Yang,Phys. Rev. D 12, 3845 (1975).

    Google Scholar 

  48. Y. Aharonov and D. Bohm,Phys. Rev. 115, 485 (1959);123, 1511 (1961);125, 2192 (1962).

    Google Scholar 

  49. J. G. Taylor,Phys. Rev. Lett. 18, 713 (1967).

    Google Scholar 

  50. J. Schwinger,Science 165, 757 (1969).

    Google Scholar 

  51. D. Zwanziger,Phys. Rev. 176, 1489 (1968);Phys. Rev. D 3, 880 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by the Department of Energy, contract DE-AC03-76SF00515.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fryberger, D. On generalized electromagnetism and Dirac algebra. Found Phys 19, 125–159 (1989). https://doi.org/10.1007/BF00734522

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00734522

Keywords

Navigation