Skip to main content
Log in

Nature’s drawing: problems and resolutions in the mathematization of motion

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

The mathematical nature of modern science is an outcome of a contingent historical process, whose most critical stages occurred in the seventeenth century. ‘The mathematization of nature’ (Koyré 1957, From the closed world to the infinite universe, 5) is commonly hailed as the great achievement of the ‘scientific revolution’, but for the agents affecting this development it was not a clear insight into the structure of the universe or into the proper way of studying it. Rather, it was a deliberate project of great intellectual promise, but fraught with excruciating technical challenges and unsettling epistemological conundrums. These required a radical change in the relations between mathematics, order and physical phenomena and the development of new practices of tracing and analyzing motion. This essay presents a series of discrete moments in this process. For mediaeval and Renaissance philosophers, mathematicians and painters, physical motion was the paradigm of change, hence of disorder, and ipso facto available to mathematical analysis only as idealized abstraction. Kepler and Galileo boldly reverted the traditional presumptions: for them, mathematical harmonies were embedded in creation; motion was the carrier of order; and the objects of mathematics were mathematical curves drawn by nature itself. Mathematics could thus be assigned an explanatory role in natural philosophy, capturing a new metaphysical entity: pure motion. Successive generations of natural philosophers from Descartes to Huygens and Hooke gradually relegated the need to legitimize the application of mathematics to natural phenomena and the blurring of natural and artificial this application relied on. Newton finally erased the distinction between nature’s and artificial mathematics altogether, equating all of geometry with mechanical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberti, L. B. (1972 [1435]). On painting and on sculpture: The Latin texts of de pictura and de statua (C. Grayson, Trans. and Ed.). London: Phaidon.

  • Alpers S. (1984) The art of describing: Dutch art in the seventeenth century. The University of Chicago Press, Chicago

    Google Scholar 

  • Bertoloni Meli D. (1992) Guidobaldo dal Monte and the Archimedean revival. Nuncius 7: 3–34

    Article  Google Scholar 

  • Bertoloni Meli D. (2006) Thinking with objects: The transformation of mechanics in the seventeenth century. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Chen-Morris Raz D. (2001) Optics, imagination, and the construction of scientific observation in Kepler’s new science. The Monist 84.4: 453–486

    Google Scholar 

  • Chen-Morris Raz D. (2009) From emblems to diagrams: Kepler’s new pictorial language of scientific representation. Renaissance Quarterly 62: 134–170

    Article  Google Scholar 

  • Coelho, V. (eds) (1992) Music and science in the age of Galileo. Kluwer Aca̋demic Publishers, Dordrecht

    Google Scholar 

  • Dascal M. (2000) Leibniz and epistemological diversity. In: Lamarra A., Palaia R. (eds) Unita e Molteplicita nel Pensiero Filosofico e Scientifico di Leibniz. Roma, Leo S. Olschki Editore, pp 15–37

    Google Scholar 

  • De Gandt F. (1995) Force and geometry in Newton’s principia. Princeton University Press, Princeton

    Google Scholar 

  • Dear P. (1995) Discipline & experience: The mathematical way in the scientific revolution. University of Chicago Press, Chicago

    Google Scholar 

  • Descartes, R. (1659–1661). Geometria, à Renato Des Cartes anno 1637 gallicè edita.... Amstelædami: Apud Ludovicum & Danielem Elzevirios.

  • Descartes, R. (1824–1826). Oeuvres de Descartes. (V. Cousin., Ed.). Paris.

  • Descartes R. (1983) Principles of philosophy (Principia philosophiæ, 1644) (V. R. Miller & R. P. Miller, Trans.). Reidel, Dordrecht

    Google Scholar 

  • Descartes R. (1985) The philosophical writings of descartes (J. Cottingham, R. Stoothof, & D. Murdoch, Trans.). Cambridge University Press, Cambridge

    Google Scholar 

  • Drabkin I. E. (1950) Aristotle’s wheel: Notes on the history of a paradox. Osiris 9: 162–198

    Article  Google Scholar 

  • Drake S., Drabkin I. E. (1969) Mechanics in sixteen-century Italy. University of Wisconsin Press, Madison

    Google Scholar 

  • Edgerton, S. (1984). Galileo, Florentine ‘disegno,’ and the ‘strange spottedness of the moon’. Art Journal (Fall 1984), 225–232.

  • Feldhay R. (1995) Galileo and the church. Cambridge University Press, Cambridge

    Google Scholar 

  • Field J. V. (1988) Kepler’s geometrical cosmology. The Athlone Press, London

    Google Scholar 

  • Freedberg D. (2002) The Eye of the lynx: Galileo, his friends and the beginnings of modern natural history. University of Chicago Press, Chicago

    Google Scholar 

  • Gal O. (2002) Meanest foundations and nobler superstructures: Hooke, Newton and the compounding of the celestiall motions of the planetts. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gal, O. (Forthcoming). From divine order to human approximation: Mathematics in Baroque science.

  • Gal O., Chen-Morris R. D. (2005) The archaeology of the inverse square law. Part I. Metaphysical images and mathematical practices. History of Science 43(4): 391–414

    Google Scholar 

  • Gal O., Chen-Morris R. D. (2006) The archaeology of the inverse square law. Part II. The use and non-use of mathematics. History of Science 44(1): 49–68

    Google Scholar 

  • Gal O., Chen-Morris R.D. (2010) Empiricism without the senses: How the instrument replaced the eye. In: Wolfe C., Gal O. (eds) The body as object and instrument of knowledge: Embodied empiricism in early modern science. Springer Verlag, Dordrecht, pp 121–148

    Chapter  Google Scholar 

  • Gal, O., & Chen-Morris, R. D. (2010). Baroque optics and the disappearance of the observer: From Kepler’s optics to descartes’ doubt. Journal for the History of Ideas, 191–217.

  • Galilei, G. (1699). Discursus et demonstrationes mathematicæ, circa duas novas scientias pertinentes ad mechanicam & motum localem.... Lugduni Batavorum: Apud Fredericum Haaring, et Davidem Severinum.

  • Galilei G. (1953 [1632]). Dialogue concerning the two chief world systems—Ptolemaic and copernican (S. Drake, Trans.). Berkeley: University of California Press.

  • Galilei, G. (1954 [1638]). Dialogues concerning two new sciences (H. Crew & A. de Silvio, Trans.). New York: Dover Publications.

  • Galluzzi P. (1979) Momento: Studi Galileiani. Edizioni dell’Ateneo & Bizzarri, Roma

    Google Scholar 

  • Gaukroger S. (1995) Descartes: An intellectual biography. Clarendon Press, Oxford

    Google Scholar 

  • Hooke R. (1665) Micrographia. Jo. Martin and Jo. Allestry, London

    Google Scholar 

  • Hooke R. (1678) Lectures De potentia restitutiva or of spring. John Martin, London

    Google Scholar 

  • Huygens, C. (1888–1950). Oeuvres complètes. La Haye: Société Hollandaise des Sciences.

  • Huygens, C. (1966). Horologium Oscilatorium. Paris, 1673. Facsimile reprint by Bruxelles: Culture et Civilisation.

  • Huygens C. (1986) The pendulum clock or geometrical demonstrations concerning the motion of pendula as applied to clocks (Horologium Oscilatorium, 1673) (R. J. Blackwell, Trans.). Iowa State University Press, Ames

    Google Scholar 

  • Jones M. (2006) The good life in the scientific revolution: Descartes, Pascal, Leibniz and the cultivation of virtue. University of Chicago Press, Chicago

    Google Scholar 

  • Kemp M. (1981) Leonardo da Vinci: the marvellous works of nature and man. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Kepler, J. (1966 [1611]). A new year’s gift, or on the six-cornered snowflake (C. Hardie, Ed. and Trans.). Oxford: Clarendon Press.

  • Kepler, J. (1997 [1619]). The harmony of the world (A. J. Aiton et al., Trans and Ann.). Philadelphia: American Philosophical Society.

  • Kepler, J. (1937). Gesammelte werke 1571–1630 (W. von Dyck & M. Caspar, Eds.). München: C. H. Beck.

  • Kepler, J. (1981 [1596]). Mysterium cosmographicum, the secret of the universue (A. M. Duncan, Trans.). New York: Abaris Books.

  • Kepler, J. (1992 [1609]). New astronomy (W. H. Donahue, Trans.). Cambridge: Cambridge University Press.

  • Kepler, J. (2000 [1604]). Optics: Paralipomena to witelo and the optical part of astronomy (W. H. Donahue, Trans.). Santa Fe, NM: Green Lion Press.

  • Koyré A. (1957) From the closed world to the infinite universe. Johns Hopkins Press, Baltimore

    Google Scholar 

  • Kusukawa S., Maclean I. (2006) Transmitting knowledge: Words, images, and instruments in early modern Europe. Oxford University Press, Oxford

    Google Scholar 

  • Landes D. S. (1983) Revolution in time: Clocks and the making of the modern world. The Belknap Press of Harvard University Press, Cambridge, MA

    Google Scholar 

  • Lefèvre, W. (eds) (2004) Picturing machines 1400–1700. MIT Press, Cambridge, MA

    Google Scholar 

  • Lefèvre, W. (eds) et al (2003) The power of images in early modern sciences. Birkhäuser verlag, Basel

    Google Scholar 

  • Lennox J. (1985) Aristotle, Galileo and the mixed sciences. In: Wallace W. (eds) Reinterpreting Galileo. Catholic University of America Press, Washington, DC, pp 29–51

    Google Scholar 

  • Leonardo da Vinci. (1938). The notebooks of Leonardo da Vinci (E. MacCurdy, Trans. and Ed.). London.

  • Lüthy, C. (eds) et al (2001) Late medieval and early modern corpuscular matter theories. Leiden, Brill

    Google Scholar 

  • Machamer, P. (eds) (1998) The Cambridge companion to Galileo. Cambridge University Press, Cambridge

    Google Scholar 

  • Maestlin, M. (1582). De Astronomiae Principalibus et Primis Fondamentis Disputatio. Heidelberg.

  • Mahoney, M. (1980). Christiaan huygens: The measurement of time and of longitude at sea. In H. J. M. Bos, et al. (Eds.), Studies on Christiaan Huygens (pp. 234–270). Lisse: Swets & Zeitlinger.

    Google Scholar 

  • Mahoney, M. (1990). Infinitesimals and transcendent relations: the mathematics of motion in the late seventeenth century. In D. C. Lindberg & R. S. Westman (Eds.), Reappraisals of the Scientific Revolution (pp. 461–492). Cambridge: Cambridge University Press.

    Google Scholar 

  • Mahoney, M. (1998). The mathematical realm of nature. In D. Garber & M. Ayers (Eds.), The Cambridge history of seventeenth century philosophy (pp. 702–755). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Mahoney, M. (2000). Huygens and the pendulum: From device to mathematical relation. In E. Grosholz & H. Breger (Eds.), The Growth of mathematical knowledge (pp. 17–39). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Mahoney, M. (2004). Drawing mechanics. In W. Lefevre (Ed.). Picturing machines, 1400–1700. Cambridge, MA: MIT Press.

    Google Scholar 

  • Mancosu P. (1996) Philosophy of mathematics and mathematical practice in the seventeenth century. Oxford University Press, New York

    Google Scholar 

  • Naylor, R. (2003). Galileo, Copernicanism and the origins of the new science of motion. The British Journal for the History of Science, 36, 151–181.

    Article  Google Scholar 

  • Newton I. (1960) The correspondence of Isaac Newton (H. Turnbull, Ed). Cambridge University Press, Cambridge

    Google Scholar 

  • Newton, I. (1999 [1687–1726]). The Principia (I. B. Cohen & A. Whitman, Trans. and Ann.). Berkeley: University of California Press.

  • Oresme N. (1968) Nicole Oresme and the medieval geometry of qualities and motions ... tractatus de configurationibus qualitatum et motuum (M. Clagett, Ed. and Trans.). The University of Wisconsin Press, Madison

    Google Scholar 

  • Oresme N. (1971) Nicole Oresme and the kinematics of circular motion: Tractatus de commensurabilitate vel incommensurabilitate motuum celi (E. Grant, Ed. and Trans.). The University of Wisconsin Press, Madison

    Google Scholar 

  • Panofsky E. (1954) Galileo as a critic of the arts. Martinus Nijhoff, The Hague

    Google Scholar 

  • E. (1980) Natural history (W. H. S Johns, Trans.). Harvard University Press, Cambridge MA

    Google Scholar 

  • Reeves E. (1997) Painting the heavens: Art and science in the age of Galileo. Princeton University Press, Princeton

    Google Scholar 

  • Regiomontanus, J. (1533). De triangulis omnimodis libri quinque. Nuremberg.

  • Renn, J., Damerow, P., & Riger, S. (2000). Hunting the white elephant: When and how did Galileo discover the law of fall?. Science in Context, 13, 299–423.

    Article  Google Scholar 

  • Shea, W. R. (Ed.). (1983). Nature mathematized. Dordrecht: Reidel.

    Google Scholar 

  • Stephenson B. (1994) Kepler’s Physicial Astronomy. Princeton University Press, Princeton

    Google Scholar 

  • Stephenson B. (1994) The Music of the Heavens: Kepler’s Harmonic Astronomy. Princeton University Press, Princeton

    Google Scholar 

  • Sutton J. (1998) Philosophy and memory traces: Descartes to connectionism. Cambridge University Press, Cambridge

    Google Scholar 

  • Taimina, D. Exploring linkages. http://kmoddl.library.cornell.edu/linkages/.

  • Tartaglia, N. (1537). Nova scientia. Venice.

  • Van Maanen, J. (1992). Seventeenth century instruments for drawing conic sections. The Mathematical Gazette, 76, 222–230.

    Article  Google Scholar 

  • Witelo. (1991). Witelionis perspectivae liber secundus et liber tertius: Books II and III of Witelo’s perspectiva (S. Unguru, Trans. and Ed.). Wroclaw: Studia Copernicana XXVIII.

  • Yoder J. G. (1988) Unrolling time: Christiaan Huygens and the mathematization of nature. Cambridge University Press, Cambridge

    Google Scholar 

  • Zwijnenberg R. (1999) The writing and drawings of Leonardo da Vinci: Order and chaos in early modern thought (C. A. Van Eck, Trans.). Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Gal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gal, O., Chen-Morris, R. Nature’s drawing: problems and resolutions in the mathematization of motion. Synthese 185, 429–466 (2012). https://doi.org/10.1007/s11229-011-9978-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-011-9978-5

Keywords

Navigation