Skip to main content
Log in

Generalized Observables, Bell’s Inequalities and Mixtures in the ESR Model for QM

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The extended semantic realism (ESR) model proposes a new theoretical perspective which embodies the mathematical formalism of standard (Hilbert space) quantum mechanics (QM) into a noncontextual framework, reinterpreting quantum probabilities as conditional instead of absolute. We provide in this review an overall view on the present status of our research on this topic. We attain in a new, shortened way a mathematical representation of the generalized observables introduced by the ESR model and a generalization of the projection postulate of elementary QM. Basing on these results we prove that the Bell-Clauser-Horne-Shimony-Holt (BCHSH) inequality, a modified BCHSH inequality and quantum predictions hold together in the ESR model because they refer to different parts of the picture of the physical world supplied by the model. Then we show that a new mathematical representation of mixtures must be introduced in the ESR model which does not coincide with the standard representation in QM and avoids some deep problems that arise from the representation of mixtures provided by QM. Finally we get a nontrivial generalization of the Lüders postulate, which is justified in a special case by introducing a reasonable physical assumption on the evolution of the compound system made up of the measured system and the measuring apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garola, C., Solombrino, L.: Found. Phys. 26, 1121 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  2. Garola, C., Solombrino, L.: Found. Phys. 26, 1329 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bell, J.S.: Rev. Mod. Phys. 38, 447 (1966)

    Article  MATH  ADS  Google Scholar 

  4. Kochen, S., Specker, E.P.: J. Math. Mech. 17, 59 (1967)

    MATH  MathSciNet  Google Scholar 

  5. Bell, J.S.: Physics 1, 195 (1964)

    Google Scholar 

  6. Garola, C.: In: Dalla Chiara, M., et al. (eds.) Language, Quantum, Music, p. 219. Kluwer, Dordrecht (1999)

    Google Scholar 

  7. Garola, C.: In: Aerts, D., Pykacz, J. (eds.) Quantum Structures and the Nature of Reality, p. 103. Kluwer, Dordrecht (1999)

    Google Scholar 

  8. Garola, C.: Int. J. Theor. Phys. 38, 3241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Garola, C.: Found. Phys. 30, 1539 (2000)

    Article  MathSciNet  Google Scholar 

  10. Garola, C.: Int. J. Theor. Phys. 44, 807 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Garola, C.: In: Accardi, L., et al. (eds.) Foundations of Probability and Physics, vol. 5, p. 51. American Institute of Physics, New York (2009)

    Google Scholar 

  12. Busch, P., Lahti, P.J., Mittelstaedt, P.: The Quantum Theory of Measurement. Springer, Berlin (1991)

    Google Scholar 

  13. Garola, C.: Found. Phys. 32, 1597 (2002)

    Article  MathSciNet  Google Scholar 

  14. Garola, C.: Found. Phys. Lett. 16, 605 (2003)

    Article  MathSciNet  Google Scholar 

  15. Garola, C., Pykacz, J.: Found. Phys. 34, 449 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Garola, C., Sozzo, S.: Int. J. Theor. Phys. (2009). doi:10.1007/s10773-009-0222-8

    Google Scholar 

  17. Szabo, L.E., Fine, A.: Phys. Lett. A 295, 229 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Garola, C.: In: Adenier, G., et al. (eds.) Quantum Theory: Reconsideration of Foundations, vol. 4, p. 247. American Institute of Physics, New York (2007)

    Google Scholar 

  19. Sozzo, S.: In: Adenier, G., et al. (eds.) Quantum Theory: Reconsideration of Foundations, vol. 4, p. 334. American Institute of Physics, New York (2007)

    Google Scholar 

  20. Garola, C.: In: Accardi, L., et al. (eds.) Foundations of Probability and Physics, vol. 5, p. 42. American Institute of Physics, New York (2009)

    Google Scholar 

  21. Sozzo, S.: In: Accardi, L., et al. (eds.) Foundations of Probability and Physics, vol. 5, p. 381. American Institute of Physics, New York (2009)

    Google Scholar 

  22. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  23. Garola, C., Sozzo, S.: Europhys. Lett. 86, 20009 (2009)

    Article  ADS  Google Scholar 

  24. Sozzo, S., Garola, C.: Int. J. Theor. Phys. (2010). doi:10.1007/s10773-010-0264-y

    Google Scholar 

  25. Garola, C., Sozzo, S.: In: Khrennikov, A.Y., et al. (eds.) Quantum Theory: Reconsideration of Foundations, vol. 5. American Institute of Physics, New York (2009)

    Google Scholar 

  26. Khrennikov, A.Y.: Found. Phys. 35, 1655 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Khrennikov, A.Y.: Physica E 29, 226 (2005)

    Article  ADS  Google Scholar 

  28. Khrennikov, A.Y.: Contextual Approach to Quantum Formalism. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  29. Adenier, G.: In: Accardi, L., et al. (eds.) Foundations of Probability and Physics, vol. 5, p. 8. American Institute of Physics, New York (2009)

    Google Scholar 

  30. Beltrametti, E.G., Cassinelli, G.: The Logic of Quantum Mechanics. Addison-Wesley, Reading (1981)

    MATH  Google Scholar 

  31. Busch, P., Grabowski, M., Lahti, P.J.: Operational Quantum Physics. Springer, Berlin (1996)

    Google Scholar 

  32. Busch, P., Lahti, P.J.: Found. Phys. 26, 875 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  33. Busch, P., Shimony, A.: Stud. Hist. Philos. Mod. Phys. 27B, 397 (1996)

    Article  MathSciNet  Google Scholar 

  34. Busch, P.: Int. J. Theor. Phys. 37, 241 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935)

    Article  MATH  ADS  Google Scholar 

  36. Norsen, T.: Found. Phys. 37, 311 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Fine, A.: Phys. Rev. Lett. 48, 291 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  38. Fine, A.: Found. Phys. 19, 453 (1989)

    Article  ADS  Google Scholar 

  39. Santos, E.: Found. Phys. 34, 1643 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Santos, E.: Stud. Hist. Philos. Mod. Phys. 36B, 544 (2005)

    Article  Google Scholar 

  41. De Caro, L., Garuccio, A.: Phys. Rev. A 54, 174 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  42. Szabo, L.E.: Found. Phys. 30, 1891 (2000)

    Article  MathSciNet  Google Scholar 

  43. Gisin, N., Gisin, B.: Phys. Lett. A 260, 323 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Garola, C., Sozzo, S.: Theor. Math. Phys. 152(2), 1087 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Sozzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garola, C., Sozzo, S. Generalized Observables, Bell’s Inequalities and Mixtures in the ESR Model for QM. Found Phys 41, 424–449 (2011). https://doi.org/10.1007/s10701-010-9435-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9435-1

Keywords

Navigation