Skip to main content

Advertisement

Log in

Missing concepts in natural selection theory reconstructions

  • Original Paper
  • Published:
History and Philosophy of the Life Sciences Aims and scope Submit manuscript

Abstract

The concept of fitness has generated a lot of discussion in philosophy of biology. There is, however, relative agreement about the need to distinguish at least two uses of the term: ecological fitness on the one hand, and population genetics fitness on the other. The goal of this paper is to give an explication of the concept of ecological fitness by providing a reconstruction of the theory of natural selection in which this concept was framed, that is, based on the way the theory was put to use in Darwin’s main texts. I will contend that this reconstruction enables us to account for the current use of the theory of natural selection. The framework presupposed in the analysis will be that of metatheoretical structuralism. This framework will provide both a better understanding of the nature of ecological fitness and a more complete reconstruction of the theory. In particular, it will provide what I think is a better way of understanding how the concept of fitness is applied through heterogeneous cases. One of the major advantages of my way of thinking about natural selection theory is that it would not have the peculiar metatheoretical status that it has in other available views. I will argue that in order to achieve these goals it is necessary to make several concepts explicit, concepts that are frequently omitted in usual reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. I will use this terminology. The use of “ecological” does not imply that this is a concept of ecology since, as I will show, the ecological fitness is the fitness from NST.

  2. Of course, other authors have noted this ambiguity (e.g., West-Eberhard 1994; Burian 1994; Gould and Vrba 1982; Brandon 1990, pp. 39–44). I do not make use of any existing account because later on I will characterize adequations in a way that differs from those available. This characterization will be crucial, since it will influence our view of the very structure of NST.

  3. The election of this name, ‘historical theory of natural selection’, presupposes that this historical explanation can be thought of as an application of a theory that can also be reconstructed by means of metatheoretical structuralism. Though I think this can be defended, this discussion will not be addressed here. There is a precedent analogous to the case at hand of two theories that are frequently confused, one of which has the standard form, and the other has a more historical character and iterates the former theory repeatedly and also adds some new concepts. This is the case of the distinction made by Lucía Federico between metabolic biochemistry and biochemistry of the metabolic pathways (Federico 2009, p. 98). Nevertheless, even if it was not the case and what I have been calling HNST is nothing more than the iteration of NNST, the distinction can still be thought of as two different ways of applying the same theory—instead of two different theories—and the main points of my paper remain unaltered. In any case, to get a better understanding of the historical explanations proposed by Darwin, a reconstruction of NNST—a theory that we find presupposed in his texts—is needed.

  4. The informal application I make of structuralism leads to a presentation of the fundamental law by means of statements, which may cause the reader some confusion given that structuralism is a semantic metatheory. It must be remembered that I am not presenting NNST in a structuralist language, but rather using important concepts of this metatheory in an informal way.

  5. In Sect. 4.5 I will focus on the notions of function and differential reproductive success and the reason why heritability is introduced in the fundamental law.

  6. Although Darwin sometimes presents sexual and natural selection as if they were two distinct mechanisms, he at times also speaks of natural selection in a more comprehensive fashion. I have presented a defense of this point in a previous paper (Ginnobili 2011b). Endler (1986, pp. 11–12), Gayon (1998, pp. 51–54), and Ghiselin (1969, p. 215), amongst others who share this view.

  7. Gayon (1998, pp. 54–59); Wilner (2006); Álvarez (2010); Brandon (1978, 1990, p. 13), among others, also defend this point.

  8. One interesting issue with these sort of applications, which can also generate reasonable doubts about the attempt to reduce artificial selection to natural selection, is that in this case it may seem strange that the long tail of a dove produced by artificial selection has the function of improving the chances of crossings being attractive to the breeder. Nevertheless, it should be noted that in this sense the application does not seem different from the one in which a flower improves its chances of being crossed by being attractive to an insect. Nor is it different from the one that considers that a peacock improves its chances of crossing by looking attractive to females of their species. The issue deserves further discussion. Here I present these applications separately to adjust more to Darwin’s writing, which usually presents artificial and natural selection as separate mechanisms, and considers that the case of insect attraction through flowers is not a case of sexual selection. Some authors, however, have found closer relations between artificial and sexual selection—e.g., Ghiselin considers the possibility that sexual selection is a variant of artificial selection (Ghiselin 1969, p. 246), which goes in the same direction as some statements by Darwin himself (1871, v.I, 259).

  9. Regarding the reconstruction of NST, group selection as it was considered by Darwin is especially interesting, since entities of different level are interrelated in the same application. Below, I include “performance of the community they belong to” as a specification of fitness, but the complete formal reconstruction requires a better way of dealing with group selection cases (see Ginnobili 2012b).

  10. An interesting precedent for the kind of work that tries to propose terms for concepts that function implicitly in practice, and which the title of this work is based on, is the article on the exaptations of Gould and Vrba (1982).

  11. The application of this principle is always ceteris paribus given the existence of other evolutionary mechanisms. A problem of this formulation arises in the vacuous satisfaction of the conditional. If the adequation of the trait does not produce an increment in the fitness, then the law will be true. An option is to replace the first conditional with a conjunction. But then the idea that the adequation that is relevant to evolution produces an increment in the fitness is missed. Another option is to replace the material conditional with another kind of counterfactual conditional.

  12. Elsewhere I have reconstructed NNST formally in structuralist terms making explicit all the concepts necessary to account for this structure in a more meticulous way (Ginnobili 2012a). For reasons of space I only provide the informal version, which is sufficient for the purposes of this paper. There is another structuralist formal reconstruction of NNST in Mario Casanueva (2011).

  13. Moreover, these are usual simplifications presupposed in the discussions of the fundamental law of NST. For example, Brandon (1980) or Kitcher (1993).

  14. The relation between functional biology and evolutionary biology in Darwin’s texts is extremely interesting; nevertheless, treating it properly is not possible here. I have discussed this issue somewhere else (Ginnobili 2014).

  15. The claim that the NNTS’ fundamental law includes at least these three concepts does not imply that every application includes only three elements. It is possible to have applications in which more traits interact, with more functions, with diverse specification of fitness. Special laws do not have to preserve the form of the fundamental law, even though they do have to maintain the same concepts and preserve certain essential relations among them.

  16. This theory-net arises only from the examined cases, that do not exhaust all the applications Darwin makes of NNST in the Origin, nor all the specializations used by Darwin in other texts or discovered by other biologists. These might change the structure in question. I think, for instance, that it is possible to include as specialization the principle of divergence, but this discussion would take up too much space. I do not expand the branch of group selection, because all the cases treated in this work imply an improvement in the survival of the group, but maybe it is possible to find the same subclasses that we find in the branch of individual selection. The theory-net presented, therefore, is neither complete nor the only way to present the available information, but rather a possible way to organize the cases we have been studying, which allows us to show the complex and unifying structure of NNST.

  17. Tim Lewens (2007, pp. 58–62) thinks that contemporary NST differs from Darwinian NST, since in contemporary NST the struggle for existence is not essential, as it is in Darwinian NST. In my reconstruction of Darwinian NST the struggle for existence—in Darwinian terms, the fact that more individuals are born than those that can survive—does not appear. This may seem a problem, but I think I have given enough bibliographic support to the idea that the struggle for existence understood as a struggle for survival is not always involved. If we think of the struggle for existence in a broad and metaphorical sense—as Darwin asks us to do (1859, p. 62)—as a struggle for leaving progeny, then there would be no difference between contemporary NST and Darwinian Theory. This metaphorical sense is covered by my reconstruction. Maybe the point raised by Lewens has to do with the role of limitations of resources that appear in the abstract way in which Darwin usually presents natural selection—as an inference from the geometric growth of populations, the arithmetic growth of food, the variation and the tendency to inherit variations, among other things (Darwin 1859, pp. 80–81). There are two points to be made about this. First, there is no reason to think that natural selection can only work in cases of limited resources (Barbadilla 1990, p. 172; Sober 1993, p. 194). Second, Darwin himself did not think that the cited argument results the theory of natural selection, but is an argument that makes natural selection probable (Darwin 1883, v. I p. 9; Gayon 1998, p. 23). This argument, moreover, should not be confused with the structure of the theory (Kitcher 1993, pp. 34–37).

  18. There are two ways in which we can say that Darwinian theories have unifying power, both present in Darwin’s texts. The first one has to do with the fact that Darwinian evolutionary biology can unify data from different disciplines (geology, embryology, systematic, biogeography, etc.; see e.g., Ruse 1998, p. 3). The second one has to do with the fact that NNST has a wide and heterogeneous set of intended applications, in the same sense that Classical Particle Mechanics has (for example, Kitcher 1981, 1993). This latter sense is the one alluded to in this work.

References

  • Abreu, C. (2012). La Teoría de los Grupos de Referencia. ÁgoraPapeles de Filosofía, 31(2), 287–309.

  • Allen, C. E., Zwaan, B. J., & Brakefield, P. M. (2011). Evolution of sexual dimorphism in the lepidoptera. Annual Review of Entomology, 56(1), 445–464.

    Article  Google Scholar 

  • Alleva, K., Díez, J. A., & Federico, L. (2012). La teoría MWC (Monod, Wyman y Changeux): El sistema alostérico. Ágora. Papeles de filosofía, 31(2), 225–250.

    Google Scholar 

  • Álvarez, J. R. (2010). La selección natural: Lenguaje, método y filosofía. Endoxa, 24, 91–122.

    Article  Google Scholar 

  • Ariew, A., & Lewontin, R. C. (2004). The confusions of fitness. British Journal for the Philosophy of Science, 55, 347–363.

    Article  Google Scholar 

  • Balzer, W., & Dawe, C. M. (1997). Models for genetics. Frankfurt am Main: Peter Lang.

    Google Scholar 

  • Balzer, W., & Göttner, H. (1983). A theory of literature logically reconstructed. Poetics, 12, 489–510.

    Article  Google Scholar 

  • Balzer, W., & Marcou, Ph. (1989). A reconstruction of Sigmund Freud’s early theory of the unconscious. In H. Westmeyer (Ed.), Psychological theories from a structuralist point of view (pp. 13–31). Berlin: Springer.

    Chapter  Google Scholar 

  • Balzer, W., & Moulines, C. U. (1996). Structuralist theory of science: Focal issues, new results. Berlin: de Gruyter.

    Book  Google Scholar 

  • Balzer, W., Moulines, C. U., & Sneed, J. D. (1987). An architectonic for science: The structuralist program. Dordrecht: Reidel.

    Book  Google Scholar 

  • Barbadilla, A. (1990). La estructura de la teoría de la selección natural. In A. Ruiz & M. Santos (Eds.), Temas Actuales de Biología Evolutiva. Barcelona: UAB.

    Google Scholar 

  • Barutta, J., & Lorenzano, P. (2012). Reconstrucción estructuralista de la teoría del movimiento circular de la sangre, de William Harvey. Scientiae Studia, 10, 217–239.

    Article  Google Scholar 

  • Blanco, D. (2012). Primera aproximación estructuralista a la Teoría del Origen en Común. Ágora, 31(2), 171–194.

    Google Scholar 

  • Bouchard, F. (2011). Darwinism without populations: A more inclusive understanding of the “Survival of the Fittest”. Studies in History and Philosophy of Biological and Biomedical Sciences, 42, 106–114.

    Article  Google Scholar 

  • Brandon, R. (1978). Adaptation and evolutionary theory. Studies in History and Philosophy of Science, 9, 181–206.

    Article  Google Scholar 

  • Brandon, R. (1980). A structural description of evolutionary theory. PSA, 1980, 427–439.

    Google Scholar 

  • Brandon, R. (1990). Adaptation and environment. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Brandon, R. (2006). The principle of drift: Biology’s first law. The Journal of Philosophy, 103(7), 319–335.

    Article  Google Scholar 

  • Burian, R. M. (1994). Adaptation: Historical perspectives. In E. F. Keller & E. A. Lloyd (Eds.), Keywords in evolutionary biology (pp. 7–12). Cambridge: Harvard University Press.

    Google Scholar 

  • Caponi, G. (2011). La segunda agenda darwiniana. Contribución preliminar a una historia del programa adaptacionista. México: Centro de estudios filosóficos, políticos y sociales Vicente Lombardo Toledano.

  • Caponi, G. (2013). Teleología Naturalizada: Los conceptos de función, aptitud y adaptación en la Teoría de la Selección Natural. Theoria, 76, 97–114.

    Article  Google Scholar 

  • Carnap, R. (1950). Logical foundations of probability. Chicago: University of Chicago Press.

    Google Scholar 

  • Casanueva, M. (1997). Genetics and fertilization: A good marriage. In A. Ibarra & T. Mormann (Eds.), Representations of scientific rationality. Contemporary formal philosophy of science in Spain (pp. 321–358). Amsterdam/Atlanta: Rodopi.

    Google Scholar 

  • Casanueva, M. (2011). A structuralist reconstruction of the mechanism of natural selection in set theory and graph formats. In J. Martinez Contreras & A. de Ponce León (Eds.), Darwin´s Evolving Legacy (pp. 177–192). México: Siglo XXI.

    Google Scholar 

  • Conner, W. E., & Corcoran, A. J. (2012). Sound strategies: The 65-million-year-old battle between bats and insects. Annual Review of Entomology, 57(1), 21–39.

    Article  Google Scholar 

  • Crone, E. E. (2001). Is survivorship a better fitness surrogate than fecundity? Evolution, 55(12), 2611–2614.

    Article  Google Scholar 

  • Cronin, H. (1991). The ant and the peacock. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cummins, R. (1975). Functional analysis. Journal of Philosophy, 72, 741–764.

    Article  Google Scholar 

  • Darwin, C. (1844). Essay of 1844. In F. Darwin (Ed.), The Foundations of The Origin of Species. Two Essays Written in 1842 and 1844. Cambridge: Cambridge University Press.

  • Darwin, C. (1859). On the origin of species by means of natural selection. London: John Murray.

    Google Scholar 

  • Darwin, C. (1871). The descent of man, and selection in relation to sex. London: John Murray.

    Book  Google Scholar 

  • Darwin, C. (1872). The origin of species (6th ed.). London: John Murray.

    Google Scholar 

  • Darwin, C. (1883). The variation of animals and plants under domestication. New York: D. Apleton and Co.

    Book  Google Scholar 

  • Davidson, D. (1970). Mental events. In L. Foster & J. W. Swanson (Eds.), Experience and theory. Amherst: University of Massachusetts Press.

    Google Scholar 

  • Dawkins, R. (1996). Climbing mount improbable. London: Viking Penguin.

    Google Scholar 

  • Diez, J. A., & Lorenzano, P. (Eds.). (2002). Desarrollos actuales de la metateoría estructuralista: problemas y discusiones. Bernal: Universidad Rovira i Virgili/Coordinación General de Investigación y Posgrado Universidad Nacional de Quilmes.

  • Díez, J., & Lorenzano, P. (2013). Who got what wrong? Sober and F&PP on Darwin: Guiding principles and explanatory models in natural selection. Erkenntnis, 78(5), 1143–1175.

    Article  Google Scholar 

  • Dobzhansky, T., Ayala, F. J., Stebbins, G. L., & Valentine, J. W. (1977). Evolution. San Francisco: W. H. Freeman and Company.

    Google Scholar 

  • Dupré, J. (2003). Darwin’s legacy. What evolution means today. Oxford: Oxford University Press.

    Google Scholar 

  • Emlen, D. J. (2008). The evolution of animal weapons. Annual Review of Ecology Evolution and Systematics, 39(1), 387–413.

    Article  Google Scholar 

  • Endler, J. A. (1986). Natural selection in the wild. Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  • Endler, J. A. (1992). Natural selection: Current usages. In E. Fox Keller, & E. A. Lloyd (Eds.), Keywords in evolutionary biology (pp. 220–224). Cambridge, MA: Harvard University Press.

  • Federico, L. (2009). Reconstrucción estructuralista de la bioquímica dinámica: las teorías de la bioquímica metabólica y de las vías metabólicas y sus “ejemplares”. Buenos Aires: Universidad Nacional de Tres de Febrero.

    Google Scholar 

  • Frost, P. (1994). Geographic distribution of human skin colour: A selective compromise between natural selection and sexual selection? Human Evolution, 9(2), 141–153. doi:10.1007/BF02437260.

    Article  Google Scholar 

  • Futuyma, D. J. (1986). Evolutionary biology (2nd ed.). Sunderland, MA: Sinauer Associates Inc.

    Google Scholar 

  • Gayon, J. (1998). Darwinism’s struggle for survival: Heredity and the hypothesis of natural selection (Cambridge Studies in Philosophy and Biology). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ghiselin, M. T. (1969). The triumph of the Darwinian method. Berkeley/London: University of California Press.

    Google Scholar 

  • Ginnobili, S. (2009). Adaptación y función. Ludus Vitalis, XVI, I(31), 3–24.

    Google Scholar 

  • Ginnobili, S. (2010). La teoría de la selección natural darwiniana. Theoria, 25(1), 37–58.

    Google Scholar 

  • Ginnobili, S. (2011a). Función como concepto teórico. Scientiae Studia, 9(4), 847–880.

    Google Scholar 

  • Ginnobili, S. (2011b). Selección Artificial, Selección Sexual, Selección Natural. Metatheoria—Revista de Filosofía E Historia de La Ciencia, 2(1), 61–78.

    Google Scholar 

  • Ginnobili, S. (2012a). Reconstrucción estructuralista de la teoría de la selección natural. Agora: papeles de Filosofía, 31, 143–169.

  • Ginnobili, S. (2012b). Todo por el panal. Consecuencias de una reconstrucción de la teoría de la selección natural darwiniana sobre la polémica de la unidad de selección. In H. A. Palma (Ed.), Darwin y el darwinismo. Ciento cincuenta años después (pp. 133–142). San Martín: UNSAMedita.

  • Ginnobili, S. (2014). La inconmensurabilidad empírica entre la teoría de la selección natural darwiniana y el diseño inteligente de la teología natural. THEORIA, 29(3), 375.

    Article  Google Scholar 

  • Glymour, B. (2006). Wayward modeling: Population genetics and natural selection. Philosophy of Science, 73(4), 369–389.

    Article  Google Scholar 

  • Gonzalo, A. N., & Balzer, W. (2012). A reconstruction of the ‘Classical’ linguistic transformation theory CLT. Metatheoria, 2(2), 25–49.

    Google Scholar 

  • Gould, S. J., & Vrba, E. S. (1982). Exaptation—A missing term in the science of form. Paleobiology, 8(1), 4–15.

    Article  Google Scholar 

  • Kettlewell, H. B. D. (1955). Selection experiments on industrial melanism in the lepidoptera. Heredity, 9, 323–342.

    Article  Google Scholar 

  • Kettlewell, H. B. D. (1956). Further selection experiments on industrial melanism in the Lepidoptera. Heredity, 10(3), 287–301.

    Article  Google Scholar 

  • Kitcher, P. (1981). Explanatory unification. Philosophy of Science, 48(4), 507–531.

    Article  Google Scholar 

  • Kitcher, P. (1993). The advancement of science: Science without legend, objectivity without illusions. New York; Oxford: Oxford University Press.

    Google Scholar 

  • Kuhn, T. S. (1970a). Second thoughts on paradigms. In F. Suppe (Ed.), The structure of scientific theories (pp. 459–482). Urbana: University of Illinois Press.

    Google Scholar 

  • Kuhn, T. S. (1970b). The structure of scientific revolutions (2nd ed., International Encyclopedia of Unified Science. Foundations of the Unity of Science; Vol. 2. No. 2.). Chicago, London: University of Chicago Press.

  • Leutenegger, W. (1987). Neonatal brain size and neurocranial dimensions in pliocene hominids: Implications for obstetrics. Journal of Human Evolution, 16(3), 291–296.

    Article  Google Scholar 

  • Levin, S. A., Muller-Landau, H. C., Nathan, R., & Chave, J. (2003). The ecology and evolution of seed dispersal: A theoretical perspective. Annual Review of Ecology Evolution and Systematics, 34(1), 575–604.

    Article  Google Scholar 

  • Lewens, T. (2007). Darwin. New York: Routledge.

    Google Scholar 

  • Lloyd, E. A. (1994). The structure and confirmation of evolutionary theory. New Jersey: Princeton University Press.

    Google Scholar 

  • Lorenzano, P. (1995). Geschichte und Struktur der klassischen Genetik. Frankfurt am Main: Peter Lang.

    Google Scholar 

  • Lorenzano, C. (2002). Una reconstrucción estructural de la bioquímica, in Díez, J. A. and Lorenzano. P. (eds.). Desarrollos actuales de la metateoría estructuralista: problemas y discusiones, Bernal: Universidad Nacional de Quilmes, pp. 209–230.

  • Lorenzano, P. (2007). Exemplars, models and laws in classical genetics. In J. L. Falguera, M. C. Martínez, & J. M. Sagüillo (Eds.), Current topics in logic and analytic philosophy/Temas actuales de Lógica y Filosofía Analítica (pp. 89–102). Santiago de Compostela: Universidade de Santiago de Compostela.

    Google Scholar 

  • Lorenzano, C. (2010). Estructuras y mecanismos en la fisiología. Scientiae Studia, 8, 41–69.

    Article  Google Scholar 

  • Lorenzano, C. (2012). Estructura y génesis de la teoría humoral de la inmunología. Ágora. Papeles de filosofía, 31(2), 195–224.

    Google Scholar 

  • Lorenzano, P. (2014). What is the status of the Hardy–Weinberg law within population genetics? In M. C. Galavotti, E. Nemeth, & F. Stadler (Eds.), European philosophy of science—Philosophy of Science in Europe and the Viennese Heritage, Vienna Circle Institute Yearbook 17 (pp. 159–172). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Lorenzano, P., Donolo, A., & Federico, L. (2007). La teoría de la bioquímica metabólica y sus ejemplos paradigmáticos. Filosofia e história da biologia, 2, 39–59.

    Google Scholar 

  • Matthen, M., & Ariew, A. (2002). Two ways of thinking about fitness and natural selection. Journal of Philosophy, 99(2), 55–83.

    Article  Google Scholar 

  • Mayr, E. (1982). The growth of biological thought. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • McShea, D., & Brandon, R. (2010). Biology’s first law. Chicago: The University of Chicago Press.

    Book  Google Scholar 

  • Mendez, D., & Casanueva, M. (2006). A reconstruction of Darwin’s pangenesis in a graph format. In G. Ernst, & K. G. Niebergall (Eds.), Philosophie der WissenschaftWissenschaft der PhilosophieFestschrift für C. Ulises Moulines zum 60. Geburtstag (pp. 157–164). Mentis: Paderborn.

  • Mendez, D., & Casanueva, M. (2012). Representación de dominios teóricos mediante retículos: el dominio de la herencia biológica durante el periodo 1865–1902. Ágora. Papeles de filosofía, 31(2), 109–141.

    Google Scholar 

  • Millikan, R. G. (1989). In defense of proper functions. Philosophy of Science, 56, 288–302.

    Article  Google Scholar 

  • Mills, S. K., & Beatty, J. H. (1979). The propensity interpretation of fitness. Philosophy of Science, 46(2), 263–286.

    Article  Google Scholar 

  • Moulines, C. U. (1982). Existential quantifiers and guiding principles in physical theories. In J. J. E. Gracia, E. Rabossi, E. Villanueva, & M. Dascal (Eds.), Philosophical analysis in latin America (pp. 173–198). Dordrecht: Reidel.

    Google Scholar 

  • Moulines, C. U. (1991). Pluralidad y Recursión. Madrid: Alianza Universidad.

    Google Scholar 

  • O’Lery, M. (2010). Consideraciones acerca de la teoría de radicales libres en el marco de la concepción estructuralista: aplicaciones intencionales. In P. García & A. Massolo (Eds.), Epistemología e Historia de la Ciencia (Vol. 16, pp. 450–458). Córdoba: Universidad Nacional de Córdoba.

    Google Scholar 

  • O’Lery, M. (2012). Análisis estructuralista de la teoría de radicales libres y su vínculo con la bioquímica de óxido-reducción. Ágora. Papeles de filosofía, 31(2), 251–270.

    Google Scholar 

  • Ospovat, D. (1981). The development of Darwin’s theory: Natural history, natural theology, and natural selection, 1838–1859. New York: Cambridge University Press.

    Google Scholar 

  • Paley, W. (1809). Natural theology (12th ed.). London: J. Faulder.

    Google Scholar 

  • Peacock, K. A. (2011). The three faces of ecological fitness. Studies in History and Philosophy of Biological and Biomedical Sciences, 42, 99–105.

    Article  Google Scholar 

  • Perez, D. (1996). Variedades de superveniencia. Manuscrito, 19(2), 165–199.

    Google Scholar 

  • Peris-Viñé, L. M. (2011). Actual models of the Chomsky grammar. Metatheoria, 1, 195–225.

    Google Scholar 

  • Pigliucci, M., & Kaplan, J. M. (2006). Making sense of evolution. Chicago: The University of Chicago Press.

    Book  Google Scholar 

  • Popper, K. (1979). Objective knowledge: An evolutionary approach (2nd ed.). Oxford: Clarendon.

    Google Scholar 

  • Ridley, M. (1996). Evolution (2nd ed.). Cambridge, MA: Blackwell Science.

    Google Scholar 

  • Ridley, M. (2004). Evolution (3rd ed.). Malden: Blackwell.

    Google Scholar 

  • Rosenberg, A. (1978). The supervenience of biological concepts. Philosophy of Science, 45(3), 368–386.

    Article  Google Scholar 

  • Rosenberg, A. (1983). Fitness. The Journal of Philosophy, 80(8), 457–473.

    Article  Google Scholar 

  • Rosenberg, A. (1985). The structure of biological science. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Rosenberg, K. R. (1992). The evolution of modern human childbirth. American Journal of Physical Anthropology, 35(S15), 89–124.

    Article  Google Scholar 

  • Rosenberg, A. (1994). Instrumental biology or the disunity of science. Chicago: The University of Chicago Press.

    Google Scholar 

  • Rosenberg, A., & Bouchard, F. (2009). Fitness. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. California: The Metaphysics Research Lab, Center for the Study of Language and Information (CSLI), Stanford University.

  • Rosenberg, A., & McShea, D. W. (2008). Philosophy of biology—A contemporary introduction. New York: Routledge.

    Google Scholar 

  • Ruse, M. (1973). The philosophy of biology. London: Hutchinson & Co.

    Google Scholar 

  • Ruse, M. (1998). Taking Darwin seriously: A naturalistic approach to philosophy. New York: Prometheus Books.

    Google Scholar 

  • Ryan, M. J., & Cummings, M. E. (2013). Perceptual biases and mate choice. Annual Review of Ecology Evolution and Systematics, 44(1), 437–459.

    Article  Google Scholar 

  • Skipper, R. A., & Millstein, R. L. (2005). Thinking about evolutionary mechanisms: Natural selection. Studies in History and Philosophy of Biological and Biomedical Sciences, 36, 237–347.

    Article  Google Scholar 

  • Smart, J. J. C. (1963). Philosophy and scientific realism. London: Routledge and Kegan Paul.

    Google Scholar 

  • Sneed, J. D. (1971). The logical structure of mathematical physics. Dordrecht-Holland: Reidel.

    Book  Google Scholar 

  • Sober, E. (1993). The nature of selection. Chicago: The University of Chicago Press.

    Google Scholar 

  • Sober, E. (2000). Philosophy of biology (2nd ed.). Boulder, CO: Westview Press.

    Google Scholar 

  • Sober, E. (2011). Did Darwin write the origin backwards. Philosophical essays on Darwin’s theory. New York: Prometheus Books.

    Google Scholar 

  • Stegmann, U. E. (2010). What can natural selection explain? Sudies in History and Philosophy of Biological and Biomedical Sciences, 41, 61–66.

    Article  Google Scholar 

  • Stephens, C. (2004). Selection, drift, and the “Forces” of evolution. Philosophy of Science, 71, 550–570.

    Article  Google Scholar 

  • Stephens, C. (2007). Natural selection. In M. Matthen & C. Stephens (Eds.), Philosophy of biology. The Netherlands: Elsevier.

    Google Scholar 

  • Thompson, P. (1989). The structure of biological theories. New York: State University of New York Press.

    Google Scholar 

  • Tuomi, J., & Haukioja, E. (1979). Predictability of the theory of natural selection: An analysis of the structure of the Darwinian theory. Savonia, 3, 1–8.

    Google Scholar 

  • Tuomi, J., Vuorisalo, T., & Laihonen, P. (1988). Components of selection: An expanded theory of natural selection. In G. D. Jong (Ed.), Population, genetics and evolution (pp. 109–118). Berlin: Springer.

    Chapter  Google Scholar 

  • West-Eberhard, M. J. (1994). Adaptation: Current usages. In E. F. Keller & E. A. Lloyd (Eds.), Keywords in evolutionary biology (pp. 13–18). Cambridge: Harvard University Press.

    Google Scholar 

  • Williams, M. B. (1970). Deducing the consequences of evolution: A mathematical model. Journal of Theoretical Biology, 29, 343–385.

    Article  Google Scholar 

  • Williams, M. B. (1980). Similarities and differences between evolutionary theory and the theories of physics. PSA, 2, 385–396.

    Google Scholar 

  • Wilner, E. (2006). Darwin’s artificial selection as an experiment. Studies in History and Philosophy of Science Part C, 37(1), 26–40.

    Article  Google Scholar 

  • Winther, R. G. (2015). The structure of scientific theories. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Fall 2015 Edition). California: The Metaphysics Research Lab, Center for the Study of Language and Information (CSLI), Stanford University.

  • Wright, L. (1976). Functions. Philosophical Review, 85, 70–86.

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Martín Ahualli, Daniel Blanco, José Díez, Pablo Lorenzano, Andrea Melamed, Luciano Piazza and Ariel Roffé for their helpful comments on previous versions of this paper. Also, I am especially grateful to Staffan Mueller-Wille for his careful work as an editor with this paper. This research was supported by the research projects PICT-2014-1741, PICT-2012-2662 (ANPCyT, Argentina), PIP No. 112-201101-01135 (CONICET, Argentina) and 32/15 255 (UNTREF, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Ginnobili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginnobili, S. Missing concepts in natural selection theory reconstructions. HPLS 38, 8 (2016). https://doi.org/10.1007/s40656-016-0109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40656-016-0109-y

Keywords

Navigation