Skip to main content
Log in

Dissipative quantum dynamics for systems periodic in time

  • Part I. Invited Papers Dedicated to Günther Ludwig
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A model of dissipative quantum dynamics (with a nonlinear friction term) is applied to systems periodic in time. The model is compared with the standard approaches based on the Floquet theorem. It is shown that for weak frictions the asymptotic states of the dynamics we propose are the periodic steady states which are usually postulated to be the states relevant for the statistical mechanics of time-periodic systems. A solution to the problem of nonuniqueness of the “quasienergies” is proposed. The implication of a nonlinear evolution for Ludwig's axiomatization is briefly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Abragam,The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1973).

    Google Scholar 

  2. A. G. Redfield,Phys. Rev. 98, 1787 (1955).

    Google Scholar 

  3. J. H. Shireley,Phys. Rev. 138B, 979 (1965).

    Google Scholar 

  4. R. H. Young and W. J. Deal,J. Math. Phys. 11, 3298 (1970).

    Google Scholar 

  5. H. Sambe,Phys. Rev. 7A, 2203 (1973).

    Google Scholar 

  6. Y. B. Zeldovich,Sov. Phys. Usp. 16, 427 (1973).

    Google Scholar 

  7. D. R. Dion and J. O. Hirschfelder,Adv. Chem. Phys. 35, 265 (1976).

    Google Scholar 

  8. G. Lochak and A. Alaoui,Ann. Fond. Louis de Broglie 2, 87 (1977).

    Google Scholar 

  9. O. Plaat,Ordinary Differential Equations (Holden-Day, San Francisco, 1971), or other books on differential equations.

    Google Scholar 

  10. G. Lochak,C.R. Acad. Sc. Paris,275B, 49, (1972);276B, 809 (1973).

    Google Scholar 

  11. N. Gisin,J. Phys. 14A, 2259 (1981).

    Google Scholar 

  12. N. Gisin, “Irreversible Quantum Dynamics and the Hilbert Space Structure of Quantum Kinematics,”J. Math. Phys. (1983), to appear.

  13. F. Gesztesy and H. Mitter,J. Phys. 14A, L79 (1981).

  14. M. H. Stone,Linear Transformations in Hilbert Space (American Mathematical Society, New York, 1966).

    Google Scholar 

  15. N. Gisin,Helv. Phys. Acta 54, 457 (1981); See alsoA Model of Dissipative Quantum Dynamics, Thesis, University of Geneva, 1982.

    Google Scholar 

  16. D. Guichon, G. Lochak, G. Theobald, and J. G. Theobald,C.R. Acad. Sc. (Paris) 274B, 935 (1972).

    Google Scholar 

  17. G. Lochak and A. Alaoui,C.R. Acad. Sc. (Paris) 282A, 1179 (1976).

    Google Scholar 

  18. R. P. Feynman,Phys. Rev. 84, 108 (1951).

    Google Scholar 

  19. G. S. Agarwal and E. Wolf,Phys. Rev. 2D, 2206 (1970).

    Google Scholar 

  20. E. B. Davies,Quantum Theory of Open Systems (Academic Press, London, 1976).

    Google Scholar 

  21. G. Ludwig, inInterpretations and Foundations of Quantum Theory, H. Neumann, ed. (B.I. Wissenschaftsverlag, Mannheim, 1981).

    Google Scholar 

  22. G. Ludwig, “Solved and Unsolved Problems in the Quantum Mechanics of Measurement,” inWerner Heisenberg und die Physik unserer Zeit, F. Bopp, ed. (Vieweg, Braunschweig, 1961).

    Google Scholar 

  23. N. Gisin and C. Piron,Lett. Math. Phys. 5, 379 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gisin, N. Dissipative quantum dynamics for systems periodic in time. Found Phys 13, 643–654 (1983). https://doi.org/10.1007/BF01889346

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01889346

Keywords

Navigation