Skip to main content
Log in

Phase transitions of iterated Higman-style well-partial-orderings

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We elaborate Weiermann-style phase transitions for well-partial-orderings (wpo) determined by iterated finite sequences under Higman-Friedman style embedding with Gordeev’s symmetric gap condition. For every d-times iterated wpo \({\left({\rm S}\text{\textsc{eq}}^{d}, \trianglelefteq _{d}\right)}\) in question, d >  1, we fix a natural extension of Peano Arithmetic, \({T \supseteq \sf{PA}}\) , that proves the corresponding second-order sentence \({\sf{WPO}\left({\rm S}{\textsc{eq}}^{d}, \trianglelefteq _{d}\right) }\) . Having this we consider the following parametrized first-order slow well-partial-ordering sentence \({\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{d}, \trianglelefteq _{d}, r\right):}\)

$$\left( \forall K > 0 \right) \left( \exists M > 0\right) \left( \forall x_{0},\ldots ,x_{M}\in {\rm S}\text{\textsc{eq}}^{d}\right)$$
$$\left( \left( \forall i\leq M\right) \left( \left| x_{i}\right| < K + r \left\lceil \log _{d} \left( i+1\right) \right\rceil \right)\rightarrow \left( \exists i < j \leq M \right) \left(x_{i} \trianglelefteq _{d} x_{j}\right) \right)$$

for a natural additive Seqd-norm |·| and r ranging over EFA-provably computable positive reals, where EFA is an abbreviation for 0 + exp. We show that the following basic phase transition clauses hold with respect to \({T = \Pi_{1}^{0}\sf{CA}_{ < \varphi ^{_{\left( d-1\right) }} \left(0\right) }}\) and the threshold point1.

  1. 1.

    If r <  1 then \({\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{d}, \trianglelefteq _{d},r \right) }\) is provable in T.

  1. 2.

    If \({r > 1}\) then \({\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{d}, \trianglelefteq _{d},r \right) }\) is not provable in T.

Moreover, by the well-known proof theoretic equivalences we can just as well replace T by PA or ACA 0 and \({\Delta _{1}^{1}\sf{CA}}\) , if d =  2 and d =  3, respectively.In the limit case d → ∞ we replaceEFA-provably computable reals r by EFA-provably computable functions \({f: \mathbb{N} \rightarrow \mathbb{R}_{+}}\) and prove analogous theorems. (In the sequel we denote by \({\mathbb{R}_{+}}\) the set of EFA-provably computable positive reals). In the basic case T =  PA we strengthen the basic phase transition result by adding the following static threshold clause

  1. 3.

    \({\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{2}, \trianglelefteq _{2}, 1\right)}\) is still provable in T = PA (actually in EFA).

Furthermore we prove the following dynamic threshold clauses which, loosely speaking are obtained by replacing the static threshold t by slowly growing functions 1 α given by \({1_{\alpha }\left( i\right)\,{:=}\,1+\frac{1}{H_{\alpha }^{-1}\left(i\right) }, H_{\alpha}}\) being the familiar fast growing Hardy function and \({H_{\alpha }^{-1}\left( i\right)\,{:=}\,\rm min \left\{ j \mid H_{\alpha } \left ( j\right) \geq i \right\}}\) the corresponding slowly growing inversion.

  1. 4.

    If \({\alpha < \varepsilon _{0}}\) , then \({\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{2}, \trianglelefteq _{2}, 1_{\alpha}\right)}\) is provable in T = PA.

  1. 5.

    \({\sf{SWP}\left( {\rm S}\text{\textsc{eq}}^{2}, \trianglelefteq _{2},1_{\varepsilon _{0}}\right)}\) is not provable in T = PA.

We conjecture that this pattern is characteristic for all \({T\supseteq \sf{PA}}\) under consideration and their proof-theoretical ordinals o (T ), instead of \({\varepsilon _{0}}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arai T.: On the slowly well orderedness of \({\varepsilon _{0}}\) . Math. Log. Q. 48(1), 125–130 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bovykin, A., Weiermann, A.: Unprovability, Phase Transitions and the Riemann Zeta Function. New Directions in Value-Distribution Theory of Zeta and L-Functions. Shaker-Verlag 19–37 (2009)

  3. Buchholz W., Cichon E.A., Weiermann A.: A uniform approach to fundamental sequences and hierarchies. Math. Log. Q. 40(2), 273–286 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Flajolet Ph., Sedgewick R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  5. Gordeev L.: Generalizations of the one-dimensional version of the Kruskal-Friedman theorems. J. Symb. Log. 54, 100–121 (1987)

    Article  MathSciNet  Google Scholar 

  6. Gordeev L.: Generalizations of the Kruskal-Friedman theorems. J. Symb. Log. 55, 157–181 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gordeev L.: Quasi-Ordinals and proof theory. Proc. Conf. Graph Minors. Contemp. Math. 147, 485–494 (1993)

    MathSciNet  Google Scholar 

  8. Gordeev L.: A modified sentence unprovable in PA. J. Symb. Log. 59, 1154–1157 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gordeev, L., Weiermann, A.: Phase Transitions in Proof Theory. DMTCS proc. AM, pp. 343–358 (2010)

  10. Montalbán A.: Computable linearizations of well-partial-orderings. Order 24(1), 39–48 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Paris J., Harrington L.: A mathematical incompleteness in Peano arithmetic. In: Barwise, J. (eds) Handbook of Mathematical Logic, North-Holland, Amsterdam (1977)

    Google Scholar 

  12. Smith, R.: The consistency strength of some finite forms of the Higman and Kruskal theorems. In: Harvey Friedman’s Research on the Foundations of Mathematics, pp. 119–136. North-Holland, Amsterdam (1985)

  13. Weiermann A.: An application of graphical enumeration to PA. J. Symb. Log. 68, 5–16 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Weiermann A.: A classification of rapidly growing Ramsey functions. Proc. Am. Math. Soc. 132, 553–561 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Weiermann A.: Classifying the provably total functions of PA. Bull. Symb. Log. 12(2), 177–190 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Weiermann A.: Phase transition thresholds for some Friedman-style independence results. Math. Log. Q. 53(1), 4–18 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Weiermann A.: Phase transitions for Gödel incompleteness. Ann. Pure Appl. Log. 157(2–3), 281–296 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Weiermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordeev, L., Weiermann, A. Phase transitions of iterated Higman-style well-partial-orderings. Arch. Math. Logic 51, 127–161 (2012). https://doi.org/10.1007/s00153-011-0258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-011-0258-3

Keywords

Mathematics Subject Classification (2000)

Navigation