Skip to main content
Log in

Quantum mechanics of space and time

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A formulation of relativistic quantum mechanics is presented independent of the theory of Hilbert space and also independent of the hypothesis of spacetime manifold. A hierarchy is established in the nondistributive lattice of physical ensembles, and it is shown that the projections relating different members of the hierarchy form a semigroup. It is shown how to develop a statistical theory based on the definition of a statistical operator. Involutions defined on the matrix representations of the semigroup are interpreted in terms ofCPT conjugations. The theory of particles of spin one-half and systems with higher spin is developed from first principles. Methods are also developed for defining energy, momentum, orbital angular momentum, and weighted spacetime coordinates without reference to a manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, Princeton, N.J., 1955).

    Google Scholar 

  2. I. M. Gel'fand,Generalized Functions, Vols. 2 and 4 (Academic Press, New York, 1968 and 1964).

    Google Scholar 

  3. G. Birkhoff and J. von Neumann,Ann. Math. 37, 823 (1936).

    Google Scholar 

  4. C. A. Hooker, ed.,Logico-algebraic Approach to Quantum Mechanics (D. Reidel, Dordrecht, Holland, 1975).

    Google Scholar 

  5. P. Suppes, ed.,Logic and Probability in Quantum Mechanics (D. Reidel, Dordrecht, Holland, 1976).

    Google Scholar 

  6. C. F. von Weizsäcker,Z. Naturforsch. 42, 521, 545 (1955);13A, 245, 705 (1958).

    Google Scholar 

  7. J. M. Blatt and C. A. Hurst,J. Aust. Math. Soc. 6, 221 (1966).

    Google Scholar 

  8. G. Birkhoff,Lattice Theory, 3rd ed. (AMS Colloquium Pubs. 25, 1967).

  9. F. J. Murray and J. von Neumann,Ann. Math. 37, 116 (1936).

    Google Scholar 

  10. A. H. Clifford and G. B. Preston,Algebraic Theory of Semigroups (AMS Mathematical Surveys 7, 1961).

  11. W. D. Munn,Q. J. Math. (Oxford) (2 11, 295 (1960).

    Google Scholar 

  12. L. de Broglie,Théorie Générale des Particules à Spin (Gauthier-Villars, Paris, 1943).

    Google Scholar 

  13. M. Fierz and W. Pauli,Proc. Roy. Soc. Lond. A173, 211 (1939); see also W. Rarita and J. Schwinger,Phys. Rev. 60, 61 (1941).

    Google Scholar 

  14. J. K. Lubanski,Physica 9, 310, 325 (1942).

    Google Scholar 

  15. H. J. Bhabha,Rev. Mod. Phys. 17, 200 (1945);Phil. Mag. 43, 33 (1952).

    Google Scholar 

  16. M. Gell-Mann,Phys. Rev. Lett. 8, 214 (1964);Aust. J. Phys. 29, 473 (1976); H. S. Green,Aust. J. Phys. 29, 483 (1976).

    Google Scholar 

  17. H. S. Green,Prog. Theor. Phys. 47, 1400 (1972).

    Google Scholar 

  18. Harish-Chandra,Phys. Rev. 71, 1933 (1947).

    Google Scholar 

  19. H. S. Green and A. J. Bracken,J. Math. Phys. 12, 2099 (1971); H. S. Green,J. Math. Phys. 12, 2106 (1971).

    Google Scholar 

  20. H. S. Green,Aust. J. Phys. 30, 1 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, H.S. Quantum mechanics of space and time. Found Phys 8, 573–591 (1978). https://doi.org/10.1007/BF00717581

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00717581

Keywords

Navigation