Skip to main content
Log in

Duality for Lattice-Ordered Algebras and for Normal Algebraizable Logics

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Part I of this paper is developed in the tradition of Stone-type dualities, where we present a new topological representation for general lattices (influenced by and abstracting over both Goldblatt's [17] and Urquhart's [46]), identifying them as the lattices of stable compact-opens of their dual Stone spaces (stability refering to a closure operator on subsets). The representation is functorial and is extended to a full duality.

In part II, we consider lattice-ordered algebras (lattices with additional operators), extending the Jónsson and Tarski representation results [30] for Boolean algebras with Operators. Our work can be seen as developing, and indeed completing, Dunn's project of gaggle theory [13, 14]. We consider general lattices (rather than Boolean algebras), with a broad class of operators, which we dubb normal, and which includes the Jónsson-Tarski additive operators. Representation of l-algebras is extended to full duality.

In part III we discuss applications in logic of the framework developed. Specifically, logics with restricted structural rules give rise to lattices with normal operators (in our sense), such as the Full Lambek algebras (F L-algebras) studied by Ono in [36]. Our Stone-type representation results can be then used to obtain canonical constructions of Kripke frames for such systems, and to prove a duality of algebraic and Kripke semantics for such logics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrusci, V. M., 1990, Non-Commutative Intuitionistic Linear Logic, Zeitschr. f. math. Logik und Grundlagen d. Math. 36, 297-318.

    Google Scholar 

  2. Allwein, G., and J. M. Dunn, 1993, Kripke Models for Linear Logic, The Journal of Symbolic Logic 58, 514-545.

    Google Scholar 

  3. Allwein, G., and C. Hartonas 1993, Duality for Bounded Lattices, Indiana University Logic Group, Preprint Series, IULG 93-25.

  4. Barwise, J., D. Gabbay, C. Hartonas 1995, On the Logic of Information Flow, Bulletin of the IGPL, 3,1, 7-49. IULG 94-29.

    Google Scholar 

  5. van Benthem, J., 1984, Modal Cerrespondance Theory, in: D. Gabbay and F. Guenthner, eds., Handbook of Philosophical Logic, vol. II, Reidel, Dordrecht, 167-247.

    Google Scholar 

  6. Birkhoff, G., 1940, Lattice Theory, reprinted 1979, Amer. Math. Soc. Colloquium Publications 25.

  7. Blok, W. J., and D. Pigozzi, 1989, Algebraizable Logics”, Memoirs of the American Mathematical Society 77,number 396, Providence, Rhode Island, USA.

    Google Scholar 

  8. Davey, B. A., and H. A. Priestley, 1990, Introduction to Lattices and Order, Cambridge Mathematical Textbooks, Cambridge University Press.

  9. DoŠen, K., 1987, Duality Between Modal Algebras and Neighborhood Frames, Studia Logica 48, 2.

    Google Scholar 

  10. DoŠen, K., 1989–90, Sequent Systems and Groupoid Models I, II, Studia Logica 47, 353-385, 48, 41–65.

    Article  Google Scholar 

  11. DoŠen, K., 1992, Modal Translations in Substructural Logics, Journal of Philosophical Logic 21, 283-336.

    Google Scholar 

  12. Dunn, J. M., 1986, Relevance Logic and Entailment, D. Gabbay and F. Guenthner eds. Handbook of Philosophical Logic vol III, D. Reidel Publishing Company, 117-224.

  13. Dunn, J. M., 1991, Gaggle Theory: An Abstraction of Galois Connections and Residuation with Applications to Negation and Various Logical Operators, Logics in AI, Proceedings European Workshop JELIA 1990, LNCS 478, Springer Verlag.

  14. Dunn, J. M., 1993, Partial-Gaggles applied to Logics with Restricted Structural Rules, Indiana University Logic Group, Preprint Series, IULG-93-22.

  15. Dunn, J. M., and Hardegree, Algebraic Methods in Philosophical Logic, (in progress).

  16. Girard, J. Y., 1987, Linear Logic, Theoretical Computer Science 50, 1-102.

    Article  Google Scholar 

  17. Goldblatt, R. I., 1975, The Stone Space of an Ortholattice, Bull. London Math. Soc. 7, 45-48.

    Google Scholar 

  18. Goldblatt, R. I., 1974, Semantic Analysis of Orthologic, Journal of Philosophical Logic 3, 19-35.

    Article  Google Scholar 

  19. Goldblatt, R. I., 1976–7, Metamathematics of Modal Logic I, II, Reports on Mathematical Logic 6 41-78 (1976), 7 21–52 (1976).

    Google Scholar 

  20. Goldblatt, R. I., 1989, Varieties of Complex Algebras, Annals of Pure and Applied Logic, 44, 173-242.

    Article  Google Scholar 

  21. Goldblatt, R. I., 1988, On Closure under Canonical Embedding Algebras, Colloquia Mathematica Societatis János Bolyai 54, Algebraic Logic, Budapest (Hungary).

  22. Goldblatt, R. I., 1992, Elementary Generation and Canonicity for Varieties of Boolean Algebras with Operators, Research Report 92-101, Victoria University of Wellington, Mathematics Department, Wellington, New Zealand.

    Google Scholar 

  23. Halmos, P. R., 1962, Algebraic Logic, Chelsea Publishing Company, New York.

    Google Scholar 

  24. Hansoul, G., 1983, A Duality for Boolean Algebras with Operators, Algebra Universalis 17, 34-49.

    Google Scholar 

  25. Hartonas, C., 1994, Algebraic and Kripke Semantics for Substructural Logics, Phd thesis, Departments of Mathematics and of Philosophy, Indiana University.

  26. Hartonas, C., 1993, Lattices with Additional Operators, Indiana University Logic Group, Preprint Series, IULG 93-27.

  27. Hartonas, C., and J. M. Dunn, 1993, Stone Duality for Lattices, Algebra Universalis, (to appear).

  28. Hartung, G., 1992, A Topological Representation of Lattices, Algebra Universalis 17, 273-299.

    Google Scholar 

  29. Johnstone, P. T., 1986, Stone Spaces, Cambridge University Press.

  30. JÓnsson, B., and A. Tarski, 1951–2, Boolean Algebras with Operators, American Journal of Mathematics, 73–74, 891-939, 127–162.

    Google Scholar 

  31. Kripke, S., 1967, Review of [32], Mathematical Reviews 34, 5660-5661.

    Google Scholar 

  32. Lemmon, E. J., 1966, Algebraic Semantics for Modal Logic, I, II, Journal of Symbolic Logic 31,number 1 46-65 and number 2 191–218.

    Google Scholar 

  33. Martinez, N. G., 1988, The Priestley Duality for Wajsberg Algebras, Studia Logica 49, 31-46.

    Article  Google Scholar 

  34. Ono, H., and Y. Komori, 1985, Logics Without the Contraction Rule, The Journal of Symbolic Logic 50, 169-201.

    Google Scholar 

  35. Ono, H., 1990, Structural Rules and a Logical Hierarchy, Mathematical Logic, Proceedings of the Summer Schools and Conference on Mathematical Logic, Heyting '88, Bulgaria, P. P. Petkov ed., Plenum Press, 95-104.

  36. Ono, H., 1992, Algebraic Aspects of Logics without Structural Rules, AMS, Contemporary Mathematics, 131, 601-621.

    Google Scholar 

  37. Priestley, H. A., 1970, Representation of Distributive Lattices by means of Ordered Stone Spaces, Bull. Lond. Math. Soc. 2, 186-90.

    Google Scholar 

  38. Routley, R., and R. K. Meyer, 1973, The Semantics of Entailment I, H. Leblanc ed. Truth, Syntax and Semantics, North Holland, Amsterdam, 194-243.

    Google Scholar 

  39. Routley, R., and R. K. Meyer, 1972, The Semantics of Entailment II and III, Journal of Philosophical Logic 1, 53-73, 192–208.

    Article  Google Scholar 

  40. Sambin, R., and V. Vaccaro, 1988, Topology and Duality in Modal Logic, Annals of Pure and Applied Logic 37, 249-296.

    Article  Google Scholar 

  41. Stone, M. H., 1938, The Representation of Boolean Algebras, Bull. Amer. Math. Soc. 44, 807-16.

    Google Scholar 

  42. Stone, M. H., 1937, Topological Representation of Distributive Lattices and Brouwerian Logics, Casopsis pro Pestovani Matematiky a Fysiky 67, 1-25.

    Google Scholar 

  43. Stone, M. H., 1937, Topological Representation of Distributive Lattices and Brouwerian Logics, Casopsis pro Pestovani Matematiky a Fysiky 67, 1-25.

    Google Scholar 

  44. Thomason, S. K., 1972, Semantic Analysis of Tense Logic, Journal of Symbolic Logic 37, 150-158.

    Google Scholar 

  45. Troelstra, A. S., 1992, Lectures on Linear Logic, Center for the Study of Language and Information, CSLI Lecture Notes No 29.

  46. Urquhart, A., 1979, A Topological Representation Theorem for Lattices Algebra Universalis 8, 45-58.

    Google Scholar 

  47. Urquhart, A., 1979, 1982, Distributive Lattices with a Dual Homomorphic Operation I, II, Studia Logica 38, 40, 201-209, 391–404.

    Article  Google Scholar 

  48. Urquhart, A., Duality for Algebras of Relevant Logics, (in progress).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartonas, C. Duality for Lattice-Ordered Algebras and for Normal Algebraizable Logics. Studia Logica 58, 403–450 (1997). https://doi.org/10.1023/A:1004982417404

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004982417404

Navigation