Skip to main content
Log in

Quantum Mechanics from Focusing and Symmetry

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A foundation of quantum mechanics based on the concepts of focusing and symmetry is proposed. Focusing is connected to c-variables—inaccessible conceptually derived variables; several examples of such variables are given. The focus is then on a maximal accessible parameter, a function of the common c-variable. Symmetry is introduced via a group acting on the c-variable. From this, the Hilbert space is constructed and state vectors and operators are given a definite interpretation. The Born formula is proved from weak assumptions, and from this the usual rules of quantum mechanics are derived. Several paradoxes and other issues of quantum theory are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)

    Article  Google Scholar 

  2. Zeilinger, A.: A foundational principle for quantum mechanics. Found. Phys. 29, 631–643 (1999)

    Article  MathSciNet  Google Scholar 

  3. Hardy, L.: Quantum theory from five reasonable axioms (2001), arXiv:quant-ph/0101012

  4. Hardy, L.: Why quantum theory? (2001), arXiv:quant-ph/0111068

  5. Hardy, L.: Why is nature described by quantum theory? In: Barrow, J.D., Davies, P.C.W., Harper, C.L. Jr. (eds.) Science and Ultimate Reality, pp. 45–71. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  6. Schack, R.: Quantum theory from four of Hardy’s axioms (2002), arXiv:quant-ph/0210017

  7. Nikolić, H.: Quantum mechanics: myths and facts. Found. Phys. 37, 1563–1611 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Doering, A., Isham, C.J.: A topos foundation for theories of physics I (2007), arXiv:quant-ph/0703060

  9. Doering, A., Isham, C.J.: A topos foundation for theories of physics II (2007), arXiv:quant-ph/0703062

  10. Doering, A., Isham, C.J.: A topos foundation for theories of physics III (2007), arXiv:quant-ph/0703064

  11. Doering, A., Isham, C.J.: A topos foundation for theories of physics IV (2007), arXiv:quant-ph/0703066

  12. The quantum measurement problem: state of play (2007), arXiv:quant-ph/07120149

  13. Petersen, A.: The philosophy of Niels Bohr. In: French, A.P., Kennedy, P.I. (eds.) Niels Bohr, A Centary Volume. Harvard University Press, Cambridge (1985)

    Google Scholar 

  14. Freund, R.: Mathematical Statistics with Applications. Pearson Education, Upper Saddle River (2004)

    Google Scholar 

  15. Rice, J.A.: Mathematical Statistics and Data Analysis. Duxbury Press, Belmont (1995)

    MATH  Google Scholar 

  16. Schack, R.: Bayesian probability in quantum mechanics. In: Bayesian Statistics 8, Proc. Valencia/ISBA 8th World Meeting on Bayesian Statistics. Oxford University Press, London (2006)

    Google Scholar 

  17. Kendall, W.S., Liang, F., Wang, J.-S.: Markov Chain Monte Carlo. Innovations and Applications. Lecture Notes Series. Institute for Mathematical Sciences. National University of Singapore, vol. 7. World Scientific, Singapore (2005)

    MATH  Google Scholar 

  18. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer, New York (1985)

    MATH  Google Scholar 

  19. Bickel, P.J., Doksum, K.A.: Mathematical Statistics. Basic Ideas and Selected Topics, vol. I. Prentice-Hall, Englewood Cliffs (2001)

    Google Scholar 

  20. Lehmann, E.L., Casella, G.: Theory of Point Estimation. Springer, New York (1998)

    MATH  Google Scholar 

  21. Bell, J.S.: On the problem of the hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)

    Article  MATH  ADS  Google Scholar 

  22. Gudder, S.P.: Hidden variables in quantum mechanics reconsidered. Rev. Mod. Phys. 40, 229–231 (1968)

    Article  ADS  Google Scholar 

  23. Aerts, D.: A possible explanation for the probabilities of quantum mechanics. J. Math. Phys. 27, 202–210 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  24. Aerts, D.: The hidden measurement formalism: what can be explained and where quantum paradoxes remain. Int. J. Theor. Phys. 37, 291–303 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pearl, J.: Causality. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  26. Eaton, M.L.: Group Invariance Applications in Statistics. Institute of Mathematical Statistics and American Statistical Association, Hayward (1989)

    MATH  Google Scholar 

  27. Fuchs, C.A.: Quantum mechanics as quantum information (and only a little more) (2002), arXiv:quant-ph/0205039

  28. Isham, C.J.: Lectures on Quantum Theory. Imperial College Press, London (1995)

    MATH  Google Scholar 

  29. Volovich, I.V.: Seven principles of quantum mechanics (2002), arXiv:quant-ph/0212126

  30. Barut, A.S., Raczka, R.: Theory of Group Representation and Applications. Polish Scientific Publishers, Warsaw (1985)

    Google Scholar 

  31. Busch, P.: Quantum states and generalized observables: a simple proof of Gleason’s theorem. Phys. Rev. Lett. 91, 120403-1–120403-4 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  32. Deutsch, D.: Quantum theory of probability and decisions. Proc. R. Soc. Lond. A 455, 3129–3137 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Wallace, D.: Quantum probability and decision theory, revisited (2002), arXiv:quant-ph/0211104

  34. Saunders, S.: Derivation of the Born rule from operational assumptions. Proc. R. Soc. Lond. A 460, 1–18 (2004)

    MathSciNet  Google Scholar 

  35. Aerts, S.: The Born rule from a consistency requirement on hidden measurements in complex Hilbert space (2002), arXiv:quant-ph/0212151

  36. Zurek, W.H.: Probabilities from entanglement, Born’s rule p k =|ψ k |2 from envariance. Phys. Rev. A 71, 052105-1–052105-29 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  37. Caves, C.M., Fuchs, C.A., Manne, K., Rennes, J.M.: Gleason-type derivations of the quantum probability rule for generalized measurements (2003), arXiv:quant-ph/0306179

  38. Gleason, A.: Measures on closed subspaces of a Hilbert space. J. Math. Mech. 6, 885–893 (1957)

    MATH  MathSciNet  Google Scholar 

  39. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered to be complete? Phys. Rev. 47, 777–780 (1935)

    Article  MATH  ADS  Google Scholar 

  40. Aerts, D., Aerts, S., Broekaert, J., Gabora, L.: The violation of Bell inequalities in the macroworld. Found. Phys. 30, 1387–1414 (2000)

    Article  MathSciNet  Google Scholar 

  41. Aerts, D., Czachor, M., D’Hooghe, B.: Towards a quantum evolutionary scheme: violating Bell’s inequalities in language. In: Gontier, N., Van Bendegem, J.P., Aerts, D. (eds.) Evolutionary Epistemology, Language and Culture. John Benjamins Publishing Company, Amsterdam (2005)

    Google Scholar 

  42. Wigner, E.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149–204 (1939)

    Article  MathSciNet  Google Scholar 

  43. von Neumann, J.: Matematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inge S. Helland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helland, I.S. Quantum Mechanics from Focusing and Symmetry. Found Phys 38, 818–842 (2008). https://doi.org/10.1007/s10701-008-9239-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-008-9239-8

Keywords

Navigation