Skip to main content

Advertisement

Log in

Whither adaptation?

  • Published:
Biology & Philosophy Aims and scope Submit manuscript

Abstract

The two authors of this paper have diametrically opposed views of the prevalence and strength of adaptation in nature. Hendry believes that adaptation can be seen almost everywhere and that evidence for it is overwhelming and ubiquitous. Gonzalez believes that adaptation is uncommon and that evidence for it is ambiguous at best. Neither author is certifiable to the knowledge of the other, leaving each to wonder where the other has his head buried. Extensive argument has revealed that each author thinks his own view is amply supported by both theory and empirical evidence. Further reflection has revealed that the differences in opinion may start with the different disciplines in which we work: evolutionary ecology for Hendry and community ecology for Gonzalez. In the present paper, we each present devastating evidence supporting our own position and thus refuting that of the other. We then identify the critical differences that led to such opposing views. We close by combining our two perspectives into a common framework based on the adaptive landscape, and thereby suggest means by which to assess the prevalence and strength of adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnold SJ, Pfrender ME, Jones AG (2001) The adaptive landscape as a bridge between micro- and macroevolution. Genetica 112–113:9–32. doi:10.1023/A:1013373907708

    Google Scholar 

  • Barton N, Partridge L (2000) Limits to natural selection. Bioessays 22:1075–1084. doi :10.1002/1521-1878(200012)22:12<1075::AID-BIES5>3.0.CO;2-M

    Google Scholar 

  • Bell G (2001) Neutral macroecology. Science 293:2413–2418. doi:10.1126/science.293.5539.2413

    Google Scholar 

  • Bell G (2008) Selection: the mechanism of evolution, 2nd edn. Oxford University Press, Oxford, UK

    Google Scholar 

  • Benkman CW (2003) Divergent selection drives the adaptive radiation of crossbills. Evol Int J Org Evol 57:1176–1181

    Google Scholar 

  • Berry RJ (1964) The evolution of an island population of the house mouse. Evol Int J Org Evol 18:468–483. doi:10.2307/2406357

    Google Scholar 

  • Bolnick DI, Nosil P (2007) Natural selection in populations subject to migration load. Evol Int J Org Evol 61:2229–2243. doi:10.1111/j.1558-5646.2007.00179.x

    Google Scholar 

  • Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441:81–83. doi:10.1038/nature04539

    Google Scholar 

  • Brandon R (1990) Adaptation and environment. Princeton University Press, Princeton

    Google Scholar 

  • Burt A (1995) The evolution of fitness. Evol Int J Org Evol 49:1–8. doi:10.2307/2410288

    Google Scholar 

  • Byars SG, Papst W, Hoffmann AA (2007) Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. Evol Int J Org Evol 61:2925–2941. doi:10.1111/j.1558-5646.2007.00248.x

    Google Scholar 

  • Case TJ, Taper ML (2000) Interspecific competition, environmental gradients, gene flow, and the coevolution of species’ borders. Am Nat 155:583–605. doi:10.1086/303351

    Google Scholar 

  • Caswell H (1976) Community structure: a neutral model analysis. Ecol Monogr 46:327–354. doi:10.2307/1942257

    Google Scholar 

  • Charlesworth B, Lande R, Slatkin M (1982) A neo-Darwinian commentary on macroevolution. Evol Int J Org Evol 36:474–498. doi:10.2307/2408095

    Google Scholar 

  • Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago

    Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366. doi:10.1146/annurev.ecolsys.31.1.343

    Google Scholar 

  • Cox GW (2004) Alien species and evolution. Island Press, Washington

    Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Crespi BJ (2000) The evolution of maladaptation. Heredity 84:623–629. doi:10.1046/j.1365-2540.2000.00746.x

    Google Scholar 

  • Dieckmann U, Ferrière R (2004) Adaptive dynamics and evolving biodiversity. In: Ferrière R, Dieckmann U, Couvet D (eds) Evolutionary conservation biology. Cambridge University Press, Cambridge, UK, pp 188–224

    Google Scholar 

  • Dieckmann U, Doebeli M, Metz JAJ, Tautz D (2004) Adaptive speciation. Cambridge University Press, Cambridge

    Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton

    Google Scholar 

  • Estes S, Arnold SJ (2007) Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales. Am Nat 169:227–244. doi:10.1086/510633

    Google Scholar 

  • Facon B, Genton BJ, Shykoff J, Jarne P, Estoup A, David P (2006) A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol Evol 21:130–135. doi:10.1016/j.tree.2005.10.012

    Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford, UK

    Google Scholar 

  • Frank S (2007) Maladaptation and the paradox of robustness in evolution. PLoS One 10:e1021

    Google Scholar 

  • Funk DJ, Nosil P, Etges WJ (2006) Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proc Natl Acad Sci USA 103:3209–3213. doi:10.1073/pnas.0508653103

    Google Scholar 

  • Fussmann GF, Loreau M, Abrams PA (2007) Eco-evolutionary dynamics of communities and ecosystems. Funct Ecol 21:465–477. doi:10.1111/j.1365-2435.2007.01275.x

    Google Scholar 

  • Gaggiotti OE, Smouse PE (1996) Stochastic migration and maintenance of genetic variation in sink populations. Am Nat 147:919–945. doi:10.1086/285886

    Google Scholar 

  • Gandon S, Michalakis Y (2002) Local adaptation, evolutionary potential and host parasite coevolution: interactions between migration, mutation, population size and generation time. J Evol Biol 15:451–462. doi:10.1046/j.1420-9101.2002.00402.x

    Google Scholar 

  • Gandon S, Ebert D, Olivieri I, Michalakis Y (1998) Differential adaptation in spatially heterogeneous environments and host-parasite coevolution. In: Mopper S, Strauss SY (eds) Genetic structure and local adaptation in natural insect populations: effects of ecology, life history ad behavior. Chapman and Hall, New York, pp 325–342

    Google Scholar 

  • Garant D, Forde SE, Hendry AP (2007) The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct Ecol 21:434–443. doi:10.1111/j.1365-2435.2006.01228.x

    Google Scholar 

  • García-Ramos G, Kirkpatrick M (1997) Genetic models of adaptation and gene flow in peripheral populations. Evol Int J Org Evol 51:21–28. doi:10.2307/2410956

    Google Scholar 

  • García-Ramos G, Rodríguez D (2002) Evolutionary speed of species invasions. Evol Int J Org Evol 56:661–668. doi:10.1554/0014-3820(2002)056[0661:ESOSI]2.0.CO;2

    Google Scholar 

  • Gienapp P, Teplitsky C, Alho JS, Mills JA, Merilä J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178

    Google Scholar 

  • Gillespie JH (1991) The causes of molecular evolution. Oxford Univ Press, Oxford

    Google Scholar 

  • Gonzalez A, Holt RD (2002) The inflationary effects of environmental fluctuations in source–sink systems. Proc Natl Acad Sci USA 99:14872–14877. doi:10.1073/pnas.232589299

    Google Scholar 

  • Gonzalez A, Lawton JH, Gilbert FS, Blackburn TM, Evans-Freke I (1998) Metapopulation dynamics, abundance and distribution in a microecosystem. Science 281:2045–2047. doi:10.1126/science.281.5385.2045

    Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. The Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–598. doi:10.1098/rspb.1979.0086

    Article  Google Scholar 

  • Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711. doi:10.1126/science.1070315

    Google Scholar 

  • Gyllenberg M, Parvinen K (2001) Necessary and sufficient conditions for evolutionary suicide. Bull Math Biol 63:981–993. doi:10.1006/bulm.2001.0253

    Google Scholar 

  • Hairston NG Jr, Ellner SP, Geber MA, Yoshida T, Fox JA (2005) Rapid evolution and the convergence of ecological and evolutionary time. Ecol Lett 8:1114–1127. doi:10.1111/j.1461-0248.2005.00812.x

    Google Scholar 

  • Haldane JBS (1930) A mathematical theory of natural and artificial selection. VI. Isolation. Proc Camb Philos Soc 26:220–230

    Google Scholar 

  • Haldane JBS (1956) The relation between density regulation and natural selection. Proc R Soc Lond B Biol Sci 145:306–308. doi:10.1098/rspb.1956.0039

    Google Scholar 

  • Hansen TF (1997) Stabilizing selection and the comparative analysis of adaptation. Evol Int J Org Evol 51:1341–1351. doi:10.2307/2411186

    Google Scholar 

  • Hansen TF, Carter AJR, Pélabon C (2006) On adaptive accuracy and precision in natural populations. Am Nat 168:168–181. doi:10.1086/505768

    Google Scholar 

  • Hanski I, Saccheri I (2006) Molecular-level variation affects population growth in a butterfly metapopulation. PLoS Biol 4:e129. doi:10.1371/journal.pbio.0040129

    Google Scholar 

  • Hendry AP (2005) The power of natural selection. Nature 433:694–695. doi:10.1038/433694a

    Google Scholar 

  • Hendry AP, Kinnison MT (1999) The pace of modern life: measuring rates of contemporary microevolution. Evol Int J Org Evol 53:1637–1653. doi:10.2307/2640428

    Google Scholar 

  • Hendry AP, Taylor EB (2004) How much of the variance in adaptive divergence can be explained by gene flow? An evaluation using lake-stream stickleback pairs. Evol Int J Org Evol 58:2319–2331

    Google Scholar 

  • Hendry AP, Nosil P, Rieseberg LH (2007) The speed of ecological speciation. Funct Ecol 21:455–464. doi:10.1111/j.1365-2435.2007.01240.x

    Google Scholar 

  • Hendry AP, Farrugia TJ, Kinnison MT (2008) Human influences on rates of phenotypic change in wild animal populations. Mol Ecol 17:20–29

    Google Scholar 

  • Hereford J, Hansen TF, Houle D (2004) Comparing strengths of directional selection: how strong is strong? Evol Int J Org Evol 58:2133–2143

    Google Scholar 

  • Hersch EI, Phillips PC (2004) Power and potential bias in field studies of natural selection. Evol Int J Org Evol 58:479–485

    Google Scholar 

  • Hoeksema JD, Forde SE (2008) A meta-analysis of factors affecting local adaptation between interaction species. Am Nat 171:275–290. doi:10.1086/527496

    Google Scholar 

  • Holt RD (1985) Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theor Popul Biol 28:181–208. doi:10.1016/0040-5809(85)90027-9

    Google Scholar 

  • Holt RD, Gomulkiewicz R (1997) How does immigration influence local adaptation? A reexamination of a familiar paradigm. Am Nat 149:563–572. doi:10.1086/286005

    Google Scholar 

  • Holt RD, Gomulkiewicz R (2004) Conservation implications of niche conservatism and evolution in heterogeneous environments. In: Ferrière R, Dieckmann U, Couvet D (eds) Evolutionary conservation biology. Cambridge University Press, Cambridge, UK, pp 244–264

    Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Hunt G (2007) The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proc Natl Acad Sci USA 104:18404–18408. doi:10.1073/pnas.0704088104

    Google Scholar 

  • Hunt G, Bell MA, Travis MP (2008) Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage. Evol Int J Org Evol . doi:10.1111/j.1558-5646.2007.00310.x

    Google Scholar 

  • Jain SK, Bradshaw AD (1966) Evolutionary divergence among adjacent plant populations. I. The evidence and its theoretical analysis. Heredity 21:407–441. doi:10.1038/hdy.1966.42

    Google Scholar 

  • Johnston RF, Selander RK (1964) House sparrows: rapid evolution of races in North America. Science 144:548–550. doi:10.1126/science.144.3618.548

    Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241. doi:10.1111/j.1461-0248.2004.00684.x

    Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Kingsolver JG, Pfennig DW (2007) Patterns and power of phenotypic selection in nature. Bioscience 57:561–572. doi:10.1641/B570706

    Google Scholar 

  • Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE et al (2001) The strength of phenotypic selection in natural populations. Am Nat 157:245–261. doi:10.1086/319193

    Google Scholar 

  • Kinnison MT, Hairston NG Jr (2007) Eco-evolutionary conservation biology: contemporary evolution and the dynamics of persistence. Funct Ecol 21:444–454. doi:10.1111/j.1365-2435.2007.01278.x

    Google Scholar 

  • Kinnison MT, Hendry AP (2001) The pace of modern life II: from rates of contemporary microevolution to pattern and process. Genetica 112–113:145–164. doi:10.1023/A:1013375419520

    Google Scholar 

  • Kinnison MT, Unwin MJ, Quinn TP (2008) Eco-evolutionary versus habitat contributions to invasion in salmon: experimental evaluation in the wild. Mol Ecol 17:405–414

    Google Scholar 

  • Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. Am Nat 150:1–23. doi:10.1086/286054

    Google Scholar 

  • Knapcyzk FN, Conner JK (2007) Estimates of the average strength of natural selection are not inflated by sampling error or publication bias. Am Nat 170:501–508. doi:10.1086/521239

    Google Scholar 

  • Lack D (1947) Darwin’s finches. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Lande R, Shannon S (1996) The role of genetic variation in adaptation and population persistence in a changing environment. Evol Int J Org Evol 50:434–437. doi:10.2307/2410812

    Google Scholar 

  • Leigh EG Jr (2007) Neutral theory: a historical perspective. J Evol Biol 20:2075–2091. doi:10.1111/j.1420-9101.2007.01410.x

    Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189. doi:10.1016/S0169-5347(02)02497-7

    Google Scholar 

  • Lenski RE, Travasino M (1994) Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc Natl Acad Sci USA 91:6808–6814. doi:10.1073/pnas.91.15.6808

    Google Scholar 

  • Liu H, Stiling P (2006) Testing the enemy release hypothesis: a review and meta-analysis. Biol Inv 8:1535–1545. doi:10.1007/s10530-005-5845-y

    Google Scholar 

  • Matsuda H, Abrams PA (1994) Timid consumers: self-extinction due to adaptive change in foraging and anti-predator effort. Theor Popul Biol 45:76–91. doi:10.1006/tpbi.1994.1004

    Google Scholar 

  • Matthews DP, Gonzalez A (2007) The inflationary effects of environmental fluctuations ensure the persistence of sink metapopulations. Ecology 88:2848–2856. doi:10.1890/06-1107.1

    Google Scholar 

  • Moore J-S, Gow JL, Taylor EB, Hendry AP (2007) Quantifying the constraining influence of gene flow on adaptive divergence in the lake-stream threespine stickleback system. Evol Int J Org Evol 61:2015–2026. doi:10.1111/j.1558-5646.2007.00168.x

    Google Scholar 

  • Mouquet N, Loreau M (2002) Coexistence in metacommunities: the regional similarity hypothesis. Am Nat 159:420–426. doi:10.1086/338996

    Google Scholar 

  • Nagy ES (1997) Selection for native characters in hybrids between two locally adapted plant subspecies. Evol Int J Org Evol 51:1469–1480. doi:10.2307/2411199

    Google Scholar 

  • Nesse RM (2005) Maladaptation and natural selection. Q Rev Biol 80:62–70. doi:10.1086/431026

    Google Scholar 

  • Nuismer SL, Gandon S (2008) Moving beyond common-garden and transplant designs: insight into the causes of local adaptation in species interactions. Am Nat 171:658–668. doi:10.1086/587077

    Google Scholar 

  • O’Neil P (1999) Selection on flowering time: an adaptive fitness surface for nonexistent character combinations. Ecology 80:806–820

    Google Scholar 

  • Parker JD, Burkepile DE, Hay ME (2006) Opposing effects of native and exotic herbivores on plant invasions. Science 311:1459–1461. doi:10.1126/science.1121407

    Google Scholar 

  • Pease CPR, Lande R, Bull JJ (1989) A model of population growth, dispersal, and evolution in a changing environment. Ecology 70:1644–1657. doi:10.2307/1938100

    Google Scholar 

  • Pelletier F, Clutton-Brock T, Pemberton J, Tuljapurkar S, Coulson T (2007) The evolutionary demography of ecological change: linking trait variation and population growth. Science 315:1571–1574. doi:10.1126/science.1139024

    Google Scholar 

  • Phillips PA, Arnold SJ (1989) Visualizing multivariate selection. Evol Int J Org Evol 43:1209–1220. doi:10.2307/2409357

    Google Scholar 

  • Phillips BL, Brown GP, Webb JK, Shine R (2006) Invasion and the evolution of speed in toads. Nature 439:803. doi:10.1038/439803a

    Google Scholar 

  • Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112–113:183–198. doi:10.1023/A:1013352109042

    Google Scholar 

  • Reznick DN, Shaw FH, Rodd FH, Shaw RG (1997) Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275:1934–1937. doi:10.1126/science.275.5308.1934

    Google Scholar 

  • Ricciardi A, Ward JM (2006) Comment on “Opposing effects of native and exotic herbivores on plant invasions”. Science 313:298a

    Google Scholar 

  • Riechert SE (1993) Investigation of potential gene flow limitation of behavioral adaptation in an aridlands spider. Behav Ecol Sociobiol 32:355–363

    Google Scholar 

  • Rose MR, Lauder GV (1996) Adaptation. Academic Press, New York

    Google Scholar 

  • Rosenzweig ML (1973) Evolution of the predator isocline. Evol Int J Org Evol 27:84–94. doi:10.2307/2407121

    Google Scholar 

  • Roy M, Holt RD, Barfield M (2005) Temporal autocorrelation can enhance the persistence and abundance of metapopulations comprised of coupled sinks. Am Nat 166:246–261. doi:10.1086/431286

    Google Scholar 

  • Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352. doi:10.1111/j.1461-0248.2004.00715.x

    Google Scholar 

  • Saccheri I, Hanski I (2006) Natural selection and population dynamics. Trends Ecol Evol 21:341–347. doi:10.1016/j.tree.2006.03.018

    Google Scholar 

  • Sax DF, Brown JH (2000) The paradox of invasion. Glob Ecol Biogeogr 9:363–371. doi:10.1046/j.1365-2699.2000.00217.x

    Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford, UK

    Google Scholar 

  • Schluter D, Grant PR (1984) Determinants of morphological patterns in communities of Darwin’s finches. Am Nat 123:175–196. doi:10.1086/284196

    Google Scholar 

  • Sheets HD, Mitchell CE (2001) Why the null matters: statistical tests, random walks and evolution. Genetica 112–113:105–125. doi:10.1023/A:1013308409951

    Google Scholar 

  • Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New York

    Google Scholar 

  • Simpson GG (1953) The major features of evolution. Columbia University Press, New York

    Google Scholar 

  • Slatkin M, Maynard Smith J (1979) Models of coevolution. Q Rev Biol 54:233–266. doi:10.1086/411294

    Google Scholar 

  • Stearns SC, Sage RD (1980) Maladaptation in a marginal population of the mosquito fish, Gambusia affinis. Evol Int J Org Evol 34:65–75. doi:10.2307/2408315

    Google Scholar 

  • Svensson E, Sinervo B (2000) Experimental excursions on adaptive landscapes: density-dependent selection on egg size. Evol Int J Org Evol 54:1396–1403

    Google Scholar 

  • Thompson JN, Nuismer SL, Gomulkiewicz R (2002) Coevolution and maladaptation. Integr Comp Biol 42:381–387. doi:10.1093/icb/42.2.381

    Google Scholar 

  • Urban MC (2006) Maladaptation and mass effects in a metacommunity: consequences for species coexistence. Am Nat 168:28–40. doi:10.1086/505159

    Google Scholar 

  • Vellend M, Geber MA (2005) Connections between species diversity and genetic diversity. Ecol Lett 8:767–781. doi:10.1111/j.1461-0248.2005.00775.x

    Google Scholar 

  • Virgl JA, Messier F (2000) Assessment of source–sink theory for predicting demographic rates among habitats that exhibit temporal changes in quality. Can J Zool 78:1483–1493. doi:10.1139/cjz-78-8-1483

    Google Scholar 

  • Webb C (2003) A complete classification of Darwinian extinction in ecological interactions. Am Nat 161:181–205. doi:10.1086/345858

    Google Scholar 

  • Williams GC (1966) Adaptation and natural selection. Princeton University Press, Princeton

    Google Scholar 

  • Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77:1661–1666. doi:10.2307/2265769

    Google Scholar 

  • Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG Jr (2003) Rapid evolution drives ecological dynamics in a predator-prey system. Nature 424:303–306. doi:10.1038/nature01767

    Google Scholar 

Download references

Acknowledgements

The motivation for this paper was a multi-day argument between Hendry and Gonzalez whilst teaching in a McGill University field course at the Gault Nature Reserve in Québec, Canada. Our fellow teachers, Irene Gregory-Eaves and Gregor Fussmann, happily added fuel to the fire. Additional helpful comments were provided by Graham Bell, Bernie Crespi, Michel Loreau, Joe Hereford, Gene Hunt, Dolph Schluter, and members of the Hendry lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Hendry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendry, A.P., Gonzalez, A. Whither adaptation?. Biol Philos 23, 673–699 (2008). https://doi.org/10.1007/s10539-008-9126-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10539-008-9126-x

Keywords

Navigation