Skip to main content
Log in

The Concept of Complementarity and its Role in Quantum Entanglement and Generalized Entanglement

  • Original Paper
  • Published:
Axiomathes Aims and scope Submit manuscript

Abstract

The term complementarity plays a central role in quantum physics, not least in various approaches to defining entanglement and the conditions for its occurrence. It has, however, been used in a variety of ways by different authors, denoting different concepts and relationships. Here we describe and clarify some of them and analyze the role they play with respect to the phenomenon of entanglement. Based on these considerations we discuss the recently proposed system-theoretical generalization of the concepts entanglement and complementarity (Atmanspacher et al. in Found Phys 32(3):379–406, 2002; von Lucadou et al. in J Conscious Stud 14(4):50–74, 2007; Filk and Römer in Axiomathes 21(2):211–220, 2011; Walach and Von Stillfried in Axiomathes 21(2): 185–209, 2011). We hope that a clarification regarding the specific meaning of these terms can be useful to the growing engagement with this interesting hypothesis and its critical investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Depending on ones interpretation of quantum theory (in particular Bell’s inequalities) this can be attributed to either of the following reasons: In an indeterminist interpretation it is due to the non-existence of any local-realist properties of the subsystem which could determine the outcome of the measurement. Alternatively, in a (hyper-) determinist interpretation, it is due to the co-dependence of the measurement process on potentially all other processes in the universe. In other words, depending on ones preferred interpretation, the state of the subsystem before measurement is unknowable or inexistent (see e.g. von Stillfried 2010, chapter 2.4).

References

  • Aerts D, Aerts S, Broekaert J, Gabora L (2000) The violation of bell inequalities in the macroworld. Found Phys 30(9):1387–1414

    Article  Google Scholar 

  • Aerts D, Aerts S, Gabora L (2009) Experimental evidence for quantum structure in cognition. In: Proceedings of: ‘QI 2009-third international symposium on quantum interaction’, Lecture notes in computer science. Springer, Berlin

  • Atmanspacher H, Römer H, Walach H (2002) Weak quantum theory: complementarity and entanglement in physics and beyond. Found Phys 32(3):379–406

    Article  Google Scholar 

  • Atmanspacher H, Filk T, Römer H (2004) Quantum Zeno features of bistable perception. Biol Cybern 90(1):33–40

    Article  Google Scholar 

  • Atmanspacher H, Filk T, Römer H (2006) Weak quantum theory: formal framework and selected applications. AIP Conf Proc 810(1):34

    Article  Google Scholar 

  • Badurek G, Buchelt RJ, Englert BG, Rauch H (2000) Wave–particle duality and quantum erasure in polarized–neutron interferometry. Nuclear Inst Methods Phys Res A 440(3):562–567

    Article  Google Scholar 

  • Baianu I, Brown R, Glazebrook J (2007) A non-Abelian, categorical ontology of spacetimes and quantum gravity. Axiomathes 17(3):353–408

    Article  Google Scholar 

  • Beim Graben P, Atmanspacher H (2006) Complementarity in classical dynamical systems. Found Phys 36(2):291–306

    Article  Google Scholar 

  • Beim Graben P, Atmanspacher H (2009) Extending the philosophical significance of the idea of complementarity. In: Atmanspacher H, Primas H (eds) Recasting reality: Wolfgang Pauli’s philosophical ideas and contemporary science. Springer, Berlin, pp 99–113

    Chapter  Google Scholar 

  • Bell JS (1964) On the Einstein Podolsky Rosen paradox. Physics 1:195–200

    Google Scholar 

  • Bell JS (1990) La nouvelle cuisine. In: Sarlemin A, Kross P (eds) Between science and technology. Elsevier, Amsterdam, pp 97–115

    Google Scholar 

  • Bennett CH, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters WK (1993) Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett 70(13):1895–1899

    Article  Google Scholar 

  • Blutner R (2010) Quantum mechanics meets cognitive science: explanatory versus descriptive approaches. NeuroQuantology 8(3):314–318

    Google Scholar 

  • Bohm D (1951) Quantum theory. Dover Publications, New York

  • Bohr N (1928) The quantum postulate and the recent development of atomic theory. Nature 121(3050):580–591

    Article  Google Scholar 

  • Bruza P, Kitto K, Nelson D, McEvoy C (2009) Is there something quantum-like about the human mental lexicon? J Math Psychol 53(5):362–377

    Article  Google Scholar 

  • Busch P (2002) The time-energy uncertainty relation. Lect Notes Phys NY New Series M 72:69–98

    Article  Google Scholar 

  • Busch P, Shilladay C (2006) Complementarity and uncertainty in Mach–Zehnder interferometry and beyond. Phys Rep 435(1):1–31

    Article  Google Scholar 

  • Busemeyer J, Franco R (2010) What is the evidence for quantum like interference effects in human judgments and decision behavior? NeuroQuantology 8(4, Suppl 1):S48–S62

    Google Scholar 

  • Clifton R (2000) Complementarity between position and momentum as a consequence of Kochen–Specker arguments. Phys Lett A 271(1–2):1–7

    Article  Google Scholar 

  • Eberhard PH (1978) Bell’s theorem and the different concepts of locality. Nuovo Cimento 46(2):392–419

    Article  Google Scholar 

  • Fach W (2011) Phenomenological aspects of complementarity and entanglement in exceptional human experiences (ExE). Axiomathes 21(2):233–247

    Article  Google Scholar 

  • Filk T (2011) Non-classical correlations in bistable perception? Axiomathes 21(2):221–232

    Article  Google Scholar 

  • Filk T, Römer H (2011) Generalized quantum theory: overview and latest developments. Axiomathes 21(2):211–220

    Article  Google Scholar 

  • Fitzgerald P (1971) Tachyons, backwards causation and freedom. Boston Stud Philos Sci 8:415–436

    Article  Google Scholar 

  • Fitzgerald P (1974) On retrocausality. Philosophia 4(4):513–551

    Article  Google Scholar 

  • Hanson R, Kouwenhoven LP, Petta JR, Tarucha S, Vandersypen LMK (2007) Spins in few-electron quantum dots. Rev Mod Phys 79(4):1217–1265

    Article  Google Scholar 

  • Heisenberg W (1927) Über den anschaulichen Inhalt der quantentheoretischen Kinematik and Mechanik. Zeitschrift für Physik 43:172–198 (English translation in Wheeler and Zurek (1983), p. 62–84)

    Article  Google Scholar 

  • Jaeger G, Shimony A, Vaidman L (1995) Two interferometric complementarities. Phys Rev A 51(1):54–67

    Article  Google Scholar 

  • Khrennikov A (2006) Quantum-like brain. Biosystems 84(3):225–241

    Article  Google Scholar 

  • Kitto K, Ramm B, Sitbon L, Bruza P (2011) Quantum theory beyond the physical: information in context. Axiomathes 21(2):331–345

    Google Scholar 

  • Kornwachs K, von Lucadou W (1985) Pragmatic information as a nonclassical concept to describe cognitive processes. Cognit Syst 1(1):79–94

    Google Scholar 

  • Kwiat PG, Mattle K, Weinfurter H, Zeilinger A, Sergienko AV, Shih Y (1995) New high-intensity source of polarization-entangled photon pairs. Phys Rev Lett 75(24):4337–4341

    Article  Google Scholar 

  • Kwiat PG, Waks E, White AG, Appelbaum I, Eberhard PH (1999) Ultrabright source of polarization-entangled photons. Phys Rev A 60(2):R773–R776

    Article  Google Scholar 

  • Lahti PJ (1979) Uncertainty and complementarity in axiomatic quantum mechanics. Doctoral Thesis. Department of Theoretical Physics, University of Turun, Finnland

  • Lahti PJ (1980) Uncertainty and complementarity in axiomatic quantum mechanics. Int J Theor Phys 19(11):789–842

    Article  Google Scholar 

  • Lewith GT, Brien S, Hyland ME (2005) Presentiment or entanglement? An alternative explanation for apparent entanglement in provings. Homeopathy 94(2):92–95

    Article  Google Scholar 

  • Martin F, Carminati GG (2009) Synchronicity, quantum mechanics, and psyche. In: Atmanspacher H, Primas H (eds) Recasting reality: Wolfgang Pauli’s philosophical ideas and contemporary science. Springer, Berlin, pp 227–243

    Chapter  Google Scholar 

  • Matschuck A (2011) Non-local correlations in therapeutic settings? A qualitative study on the basis of weak quantum theory and the model of pragmatic information. Axiomathes 21(2):249–261

    Article  Google Scholar 

  • Milgrom LR (2002) Patient-practitioner-remedy (PPR) entanglement. Part 1: a qualitative, non-local metaphor for homeopathy based on quantum theory. Homeopathy 91(4):239–248

    Article  Google Scholar 

  • Mittelstaedt P, Prieur A, Schieder R (1987) Unsharp particle-wave duality in a photon split-beam experiment. Found Phys (Hist Arch) 17(9):891–903

    Article  Google Scholar 

  • Noether E (1918) Invariante Variationsprobleme. Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse 1918(2):235–257

  • Pothos EM, Busemeyer JR (2009) A quantum probability explanation for violations of ‘rational’decision theory. Proc Royal Soc B Biol Sci 276(1665):2171–2178

    Article  Google Scholar 

  • Pothos EM, Busemeyer JR, Shiffrin RM, Trueblood JS, Wang Z, Blutner RK, Atmanspacher H (2011) The potential of quantum probability for modeling cognitive processes. In: Proceedings of 33rd annual conference of the cognitive science society, Cognitive Science Society, Austin, TX

  • Primas H (2003) Time-entanglement between mind and matter. Mind Matter 1(1):81–119

    Google Scholar 

  • Primas H (2007) Non-boolean descriptions for mind-matter problems. Mind Matter 5(1):7–44

    Google Scholar 

  • Römer H (2006) Complementarity of process and substance. Mind Matter 4(1):69–89

    Google Scholar 

  • Schwindt PDD, Kwiat PG, Englert BG (1999) Quantitative wave-particle duality and nonerasing quantum erasure. Phys Rev A 60(6):4285–4290

    Article  Google Scholar 

  • Scully MO, Englert BG, Walther H (1991) Quantum optical tests of complementarity. Nature 351(6322):111–116

    Article  Google Scholar 

  • Smithey DT, Beck M, Cooper J, Raymer MG (1993) Measurement of number-phase uncertainty relations of optical fields. Phys Rev A 48(4):3159

    Article  Google Scholar 

  • Stöcker H (1994) Taschenbuch der Physik. Verlag Harry Deutsch, Frankfurt am Main

    Google Scholar 

  • Trueblood JS, Busemeyer JR (2011) A quantum probability account of order effects in inference. Cogn Sci 35(8):1518–1552

    Google Scholar 

  • von Lucadou W (1991) Complementarity and non-locality in complex systems. In: Proceedings of: workshop on parallel processing: logic, organization, and technology, WOPPLOT 89, Wildbad Kreuth, July 1989

  • von Lucadou W (1995) The model of pragmatic information (MPI). Eur J Parapsychol 11:58–75

    Google Scholar 

  • von Lucadou W (2006) Self-organization of temporal structures: a possible solution for the intervention problem. AIP Conf Proc 863:293

    Article  Google Scholar 

  • von Lucadou W, Römer H, Walach H (2007) Synchronistic phenomena as entanglement correlations in generalized quantum theory. J Conscious Stud 14(4):50–74

    Google Scholar 

  • von Stillfried N (2008) A systems-theoretical generalization of non-local correlations In: Vrobel S, Rössler OE, Marks-Tarlow T (eds) Simultaneity: temporal structures and observer perspectives, World Scientific, Singapore, pp 62–78

  • von Stillfried N (2010) Theoretical and empirical explorations of “Generalized Quantum Theory”. Doctoral Thesis, Kulturwissenschftliche Fakultät, Europa Universität Viadrina, Frankfurt a. d. Oder:, available at: http://opus.kobv.de/euv/volltexte/2010/33/

  • von Stillfried N, Walach H (2006) The whole and its parts: are complementarity and non-locality intrinsic to closed systems? Int J Comput Anticipat Syst 17:137–146

    Google Scholar 

  • Walach H (2003) Entanglement model of homeopathy as an example of generalized entanglement predicted by weak quantum theory. Forsch Komp Klas Nat 10(4):192–200

    Article  Google Scholar 

  • Walach H, Von Stillfried N (2011) Generalized quantum theory: theory—basic idea and general intuition: a background story and overview. Axiomathes 21(2):185–209

    Article  Google Scholar 

  • Weingärtner O (2007) The nature of the active ingredient in ultramolecular dilutions. Homeopathy 96:220–226

    Article  Google Scholar 

  • Wigner EP (1959) Group theory. Academic Press, New York

    Google Scholar 

Download references

Acknowledgments

We would like to thank Thomas Filk and Hartmann Römer for enlightening conversations and helpful comments on this paper. NvS gratefully acknowledges funding from the Fetzer Franklin Fund. TH wants to thank the Heiligenfeld Kliniken Bad Kissingen, Germany and the Samueli Institute for Information Biology (SIIB, VA, USA) for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thilo Hinterberger or Nikolaus von Stillfried.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinterberger, T., von Stillfried, N. The Concept of Complementarity and its Role in Quantum Entanglement and Generalized Entanglement. Axiomathes 23, 443–459 (2013). https://doi.org/10.1007/s10516-012-9187-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10516-012-9187-y

Keywords

Navigation