Skip to main content
Log in

Intrinsic Properties of Quantum Systems

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A new realist interpretation of quantum mechanics is introduced. Quantum systems are shown to have two kinds of properties: the usual ones described by values of quantum observables, which are called extrinsic, and those that can be attributed to individual quantum systems without violating standard quantum mechanics, which are called intrinsic. The intrinsic properties are classified into structural and conditional. A systematic and self-consistent account is given. Much more statements become meaningful than any version of Copenhagen interpretation would allow. A new approach to classical properties and measurement problem is suggested. A quantum definition of classical states is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  2. Nikolic, H.: Quantum mechanics: myths and facts. arXiv:quant-ph/0609163

  3. Isham, C.J.: Lectures on Quantum Theory. Mathematical and Structural Foundations. Imperial College Press, London (1995)

    MATH  Google Scholar 

  4. d’Espagnat, B.: Veiled Reality. Addison–Wesley, Reading (1995)

    Google Scholar 

  5. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht (1995)

    MATH  Google Scholar 

  6. Ludwig, G.: Foundations of Quantum Mechanics. Springer, Berlin (1983)

    MATH  Google Scholar 

  7. Kraus, K.: States, Effects, and Operations. Lecture Notes in Physics, vol. 190. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  8. Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  9. Dirac, P.A.M.: Quantum Mechanics, 4th edn. Clarendon Press, Oxford (1958)

    MATH  Google Scholar 

  10. von Neumann, J.: Mathematical Foundation of Quantum Mechanics. Princeton University Press, Princeton (1955)

    Google Scholar 

  11. Tolar, J., Hájíček, P.: Phys. Lett. A 353, 19 (2006)

    Article  ADS  Google Scholar 

  12. Schroeck, F.E.: Quantum Mechanics on Phase Space. Kluwer Academic, Dordrecht (1996)

    MATH  Google Scholar 

  13. Hájíček, P.: Quantum model of classical mechanics: maximum entropy packets. arXiv:0901.0436

  14. Piron, C.: Foundations of Quantum Physics. Benjamin, Reading (1976)

    MATH  Google Scholar 

  15. Piron, C.: Found. Phys. 2, 287 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  16. Birkhoff, G., von Neumann, J.: Ann. Math. 37, 823 (1936)

    Article  Google Scholar 

  17. Thirring, W.: Lehrbuch der Mathematischen Physik. Springer, Berlin (1980)

    MATH  Google Scholar 

  18. Leggett, A.J.: J. Phys.: Condens. Matter 14, R415 (2002)

    Article  ADS  Google Scholar 

  19. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., Zeh, H.D.: Decoherence and the Appearance of Classical World in Quantum Theory. Springer, Berlin (1996)

    MATH  Google Scholar 

  20. Exner, F.: Vorlesungen über die physikalischen Grundlagen der Naturwissenschaften. Deuticke, Leipzig (1922)

    Google Scholar 

  21. Born, M.: Phys. Bl. 11, 49 (1955)

    Google Scholar 

  22. Jaynes, E.T.: Probability Theory. The Logic of Science. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  23. van Kampen, N.G.: Physica A 194, 542 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  24. Zurek, W.H.: Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  25. Poulin, D.: Phys. Rev. A 71, 022102 (2005)

    Article  ADS  Google Scholar 

  26. Kofler, J., Brukner, Č.: Phys. Rev. Lett. 99, 180403 (2007)

    Article  ADS  Google Scholar 

  27. Hepp, K.: Helv. Phys. Acta 45, 237 (1972)

    Google Scholar 

  28. Bell, J.S.: Helv. Phys. Acta 48, 93 (1975)

    MATH  MathSciNet  Google Scholar 

  29. Bóna, P.: Acta Phys. Slov. 23, 149 (1973)

    Google Scholar 

  30. Bóna, P.: Acta Phys. Slov. 25, 3 (1975)

    Google Scholar 

  31. Bóna, P.: Acta Phys. Slov. 27, 101 (1977)

    Google Scholar 

  32. Sewell, G.L.: Quantum Mechanics and its Emergent Macrophysics. Princeton University Press, Princeton (2002)

    MATH  Google Scholar 

  33. Bell, J.S.: Against ‘measurement’. In: Miller, A.I. (ed.) Sixty Two Years of Uncertainty. Plenum, New York (1990)

    Google Scholar 

  34. Wallace, D.: The quantum measurement problem: state of play. arXiv:0712.0149v1 [quant-ph]

  35. Jauch, J.M.: Helv. Phys. Acta 37, 293 (1964)

    MATH  MathSciNet  Google Scholar 

  36. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1976)

    Google Scholar 

  37. Rutherford, D.E.: Proc. R. Soc. (Edinb.), Ser. A 62, 229 (1947)

    MathSciNet  Google Scholar 

  38. Rutherford, D.E.: Proc. R. Soc. (Edinb.), Ser. A 63, 232 (1951)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tolar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hájíček, P., Tolar, J. Intrinsic Properties of Quantum Systems. Found Phys 39, 411–432 (2009). https://doi.org/10.1007/s10701-009-9296-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9296-7

Keywords

Navigation