Skip to main content
Log in

CLASSICAL PHYSICS AND EARLY QUANTUM THEORY: A LEGITIMATE CASE OF THEORETICAL UNDERDETERMINATION

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

In 1912, Henri Poincaré published an argument which apparently shows that the hypothesis of quanta is both necessary and sufficient for the truth of Planck's experimentally corroborated law describing the spectral distribution of radiant energy in a black body. In a recent paper, John Norton has reaffirmed the authority of Poincarés argument, setting it up as a paradigm case in which empirical data can be used to definitively rule out theoretical competitors to a given theoretical hypothesis. My goal is to dispute Norton's claim that there is no theoretical underdetermination problem arising between classical physics and early quantum theory. The strategy I use in defending my view is to adopt a suggestion made by Jarrett Leplin and Larry Laudan on how to assess the relative merits of competing theoretical alternatives, where each alternative has an equal capacity to ‘save the phenomena’. In the course of the paper, I distinguish between two branches of classical physics: classical mechanics and classical electromagnetism. The former is claimed by Norton and Poincaré to be determinately ruled out by the black body evidence; and it is the former that I argue is compatible with this evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bohm, David: 1951, Quantum Theory, Prentice-Hall, New York.

    Google Scholar 

  • Boltzmann, Ludwig: 1895, ‘On Certain Questions of the Theory of Gases', Nature 51, 414–16.

    Google Scholar 

  • Borowitz, Sidney and Lawrence A. Bornstein: 1968, A Contemporary View of Elementary Physics, McGraw-Hill, New York.

    Google Scholar 

  • Brush, Stephen G.:1976, The Kind of Motion We Call Heat, North-Holland, Amsterdam.

  • Clausius, Rudolf: 1857, ‘The Nature of the Motion which we call Heat', translated in Stephen G. Brush (ed.), Kinetic Theory, Vol. 1, 1965, Pergamon Press, Oxford.

    Google Scholar 

  • Davidson, Norman: 1962, Statistical Mechanics, McGraw-Hill, New York.

    Google Scholar 

  • Dugas, René: 1955, A History of Mechanics, Editions du Griffon, Neuchatel.

    Google Scholar 

  • Ehrenfest, Paul: 1911, ‘Welche Züge der Lichtquantenhypotheses spielen in der Theorie der Warmestrahlung eine wesentliche Rolle?', Annalen der Physik 36, 91–118.

    Article  Google Scholar 

  • Einstein, Albert: 1906, ‘Zur Theorie der Lichterzeugung und Lichtabsorption', Annalen der Physik 20, 119–206.

    Google Scholar 

  • Einstein, Albert: 1907, ‘Planck's Theory of Radiation and the Theory of Specific Heats', translated in Anna Beck (ed.), The Collected Papers of Albert Einstein, Vol. 2, 1989, Princeton University Press, Princeton.

    Google Scholar 

  • Einstein, Albert: 1909, ‘Zum gegenwärtgen Stand des Strahlungsproblems', Physikalische Zeitschrift 10, 185–93.

    Google Scholar 

  • Einstein, Albert: 1917, ‘On the Quantum Theory of Radiation', translated in D. ter Haar (ed.), The Old Quantum Theory, 1967, Pergamon Press, Oxford.

    Google Scholar 

  • Fowler, R. H.: 1936, Statistical Mechanics, 2nd Edition, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Garber, Elizabeth: 1976, ‘Some Reactions to Planck's Law, 1900–1914', Studies in History and Philosophy of Science 7, 89–126.

    Article  Google Scholar 

  • Harper, William: 1991, ‘Newton's Classic Deductions from Phenomena', in A. Fine, M. Forbes and L. Wessels (eds.), PSA 1990, Vol. 2, Philosophy of Science Association, East Lansing, Michigan, 183–196.

    Google Scholar 

  • Hermann, Armin: 1971, The Genesis of Quantum Theory (1899–1913), translated by Claude W. Nash, The MIT Press, Cambridge, MA.

    Google Scholar 

  • Jammer, Max: 1966, The Conceptual Development of Quantum Mechanics, McGraw-Hill, New York.

    Google Scholar 

  • Jeans, James: 1903, ‘The Kinetic Theory of Gases developed from a New Standpoint', Philosophical Magazine 5, 597–620.

    Google Scholar 

  • Jeans, James: 1904, The Dynamical Theory of Gases, 1st Edition, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Jeans, James: 1905a, ‘On the Partition of Energy between Matter and Aether', Philosophical Magazine 10, 91–98.

    Google Scholar 

  • Jeans, James: 1905b, ‘The Dynamical Theory of Gases', Nature 71, 607.

    Article  Google Scholar 

  • Jeans, James: 1905c, ‘The Dynamical Theory of Gases and Radiation', Nature 72, 101–102.

    Article  Google Scholar 

  • Jeans, James: 1905d, ‘A Comparison of Two Theories of Radiation', Nature 72, 293–294.

    Article  Google Scholar 

  • Jeans, James: 1905e, ‘On the Application of Statistical Mechanics to the General Dynamics of Matter and Ether', Proceedings of the Royal Society of London A 76, 296–311.

    Article  Google Scholar 

  • Jeans, James: 1905f, ‘On the Laws of Radiation', Proceedings of the Royal Society of London A 76, 545–52.

    Article  Google Scholar 

  • Jeans, James: 1910, ‘Planck's Theory of Radiation and Non-Newtonian Mechanics', Philosophical Magazine 20, 943–54.

    Google Scholar 

  • Jeans, James: 1914, Report on Radiation and the Quantum Theory, ‘The Electrician’ Publishing Company, London

    Google Scholar 

  • Jeans, James: 1916, The Dynamical Theory of Gases, 2nd Edition, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Jeans, James: 1940, An Introduction to the Kinetic Theory of Gases, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Johnson, W. E.: 1964, Logic, Part II, Dover, New York.

    Google Scholar 

  • Kelvin, Lord: 1900, ‘Nineteenth Century Clouds over the Dynamical Theory of Heat and Light', in Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light, 1904, C. J. Clay and Sons, London, Appendix B.

    Google Scholar 

  • Klein, Martin: 1962, ‘Max Planck and the Beginnings of Quantum Theory', Archive for History of Exact Sciences 1, 459–79.

    Article  Google Scholar 

  • Kuhn, Thomas: 1978, Black-Body Theory and the Quantum Discontinuity, 1894–1912, Clarendon Press, Oxford.

    Google Scholar 

  • Laudan, Larry and Jarrett Leplin: 1991, ‘Empirical Equivalence and Underdetermination', Journal of Philosophy 88, 449–72.

    Article  Google Scholar 

  • Leplin, Jarrett and Larry Laudan: 1993, ‘Determination Undeterred: Reply to Kukla', Analysis 53, 8–16.

    Article  Google Scholar 

  • Mayer, Joseph Edward and Maria Goeppert Mayer: 1977, Statistical Mechanics, 2nd Edition, John Wiley and Sons, New York.

    Google Scholar 

  • Maxwell, James Clerk: 1860, ‘Illustrations of the Dynamical Theory of Gases', in Stephen G. Brush (ed.), Kinetic Theory, Vol. 1, 1965, Pergamon Press, Oxford.

    Google Scholar 

  • Maxwell, James Clerk: 1866, ‘On the Dynamical Theory of Gases', in Stephen G. Brush (ed.), Kinetic Theory, Vol. 2, 1966, Pergamon Press, Oxford.

    Google Scholar 

  • Maxwell, James Clerk: 1875, ‘On the Dynamical Evidence of the Molecular Constitution of Bodies', in W. D. Niven (ed.), The Scientific Papers of James Clerk Maxwell, Vol. 2, 1890, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Maxwell, James Clerk: 1879, ‘On Boltzmann's Theorem on the Average Distribution of Energy in a System of Material Points', in W. D. Niven (ed.), The Scientific Papers of James Clerk Maxwell, Vol. 2, 1890, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • McCormmach, Russell: 1967, ‘Henri Poincaré and the Quantum Theory', Isis 58, 37–55.

    Article  Google Scholar 

  • Michelson, Wladimir: 1887, ‘Theoretical Essay on the Distribution of Energy in the Spectra of Solids', translated in Philosophical Magazine 25, 1888, 425–35.

    Google Scholar 

  • Norton, John: 1987, ‘The Logical Inconsistency of the Old Quantum Theory of Black Body Radiation', Philosophy of Science 54, 237–50.

    Article  Google Scholar 

  • Norton, John: 1993, ‘The Determination of Theory by Evidence: The Case for Quantum Discontinuity, 1900–1915', Synthese 97, 1–31.

    Article  Google Scholar 

  • Pais, Abraham: 1982, Subtle is the Lord, Clarendon Press, Oxford.

    Google Scholar 

  • Planck, Max: 1899, ‘Über irreversible Strahlungsvorgänge, fünfte Mittheilung', Sitzungsberichte der Koniglich-Preussischen Akademie der Wissenschaften I, 440–80.

    Google Scholar 

  • Planck, Max: 1900, ‘Zur Theorie des Gesetzes der Energieverteilung in Normal spectrum', Verhandlungen der Deutschen Physikalischen Gesellschaft 2, 237–45.

    Google Scholar 

  • Planck, Max: 1913, The Theory of Heat Radiation, 2nd Edition, translated by Morton Masius, 1914, Blakiston's, Philadelphia.

    Google Scholar 

  • Poincaré, Henri: 1912, ‘Sur la theorie des quanta', in Oeuvres de Henri Poincaré, Vol. 9, edited under the auspices of the Academie des Sciences, 1954, Gauthier-Villars, Paris.

    Google Scholar 

  • Poincaré, Henri: 1913a, ‘The Relations Between Matter and Ether', translated by J. W. Bolduc, in Mathematics and Science: Last Essays, 1963, Dover, New York, 89–101.

    Google Scholar 

  • Poincaré, Henri: 1913b, ‘The Quantum Theory', translated by J.W. Bolduc, in Mathematics and Science: Last Essays, 1963, Dover, New York, 75–88.

    Google Scholar 

  • Rayleigh, Lord: 1900a, ‘The Law of Partition of Kinetic Energy', Philosophical Magazine 49, 98–118.

    Google Scholar 

  • Rayleigh, Lord: 1900b, ‘Remarks upon the Law of Complete Radiation', Philosophical Magazine 49, 539–40.

    Google Scholar 

  • Rayleigh, Lord: 1905a, ‘The Dynamical Theory of Gases', Nature 71, 559.

    Article  Google Scholar 

  • Rayleigh, Lord: 1905b, ‘The Dynamical Theory of Gases and Radiation', Nature 72, 54–55.

    Article  Google Scholar 

  • Rayleigh, Lord: 1905c, ‘The Constant of Radiation as Calculated from Molecular Data', Nature 72, 243–44.

    Article  Google Scholar 

  • Richtmyer, F. K., E. H. Kennard and T. Lauritsen: 1955, Introduction to Modern Physics, McGraw-Hill, New York.

    Google Scholar 

  • Waterston, J. J.: 1843. Thoughts on the Mental Functions, in J. S. Haldane (ed.), The Collected Scientific Papers of John James Waterston, 1928, Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Waterston, J. J.: 1845, ‘On the Physics of Media that are Composed of Free and Elastic Molecules in a State of Motion', in J. S. Haldane (ed.), The Collected Scientific Papers of John James Waterson, 1928, Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Waterston, J. J.: 1851, ‘On the Physics of Media that are Composed of Free and Elastic Molecules in a State of Motion’ (Abstract), in J. S. Haldane (ed.), The Collected Scientific Papers of John James Waterston, 1928, Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Wien, Wilhelm: 1896, ‘On the Division of Energy in the Emission-Spectrum of a Black Body', translated in Philosophical Magazine 43, 1897, 214–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudson, R.G. CLASSICAL PHYSICS AND EARLY QUANTUM THEORY: A LEGITIMATE CASE OF THEORETICAL UNDERDETERMINATION. Synthese 110, 217–256 (1997). https://doi.org/10.1023/A:1004933210125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004933210125

Keywords

Navigation