Skip to main content
Log in

Cognitive Principles for Information Management: The Principles of Mnemonic Associative Knowledge (P-MAK)

  • Published:
Minds and Machines Aims and scope Submit manuscript

Abstract

Information management systems improve the retention of information in large collections. As such they act as memory prostheses, implying an ideal basis in human memory models. Since humans process information by association, and situate it in the context of space and time, systems should maximize their effectiveness by mimicking these functions. Since human attentional capacity is limited, systems should scaffold cognitive efforts in a comprehensible manner. We propose the Principles of Mnemonic Associative Knowledge (P-MAK), which describes a framework for semantically identifying, organizing, and retrieving information, and for encoding episodic events by time and stimuli. Inspired by prominent human memory models, we propose associative networks as a preferred representation. Networks are ideal for their parsimony, flexibility, and ease of inspection. Networks also possess topological properties—such as clusters, hubs, and the small world—that aid analysis and navigation in an information space. Our cognitive perspective addresses fundamental problems faced by information management systems, in particular the retrieval of related items and the representation of context. We present evidence from neuroscience and memory research in support of this approach, and discuss the implications of systems design within the constraints of P-MAK’s principles, using text documents as an illustrative semantic domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. However the archealogical record suggests a stoic state of mind, with little evidence of imaginative artistry. Apparently the lesser working memory of Neanderthalensis eventually allowed the incremental innovation of Homo Sapiens to pull ahead.

  2. The mechanistic principles also apply to the constraints of brain function, as suggested by Marr (1982), but such an analysis is separate from our focus on improved human–machine interaction.

  3. Information management is primarily concerned with long-term storage and retrieval. Thus we do not directly discuss short-term working memory (Baddeley and Hitch 1974), which has more to do with transient attentional processes that assemble cues to process retrievals.

  4. As “an enlarged intimate supplement” to memory, memex is the earliest system design to embody the crucial human-centred principles of associationism and persistence.

  5. A possible method of coding asymmetry of relation between words is mentioned briefly in (Landauer and Dumais 1997), although not elaborated.

  6. Different knowledge structures are optimal for different types of representation. For instance, as Bayes nets provide a compact representation of joint probability distributions, so the network representation of P-MAK provides a compact representation of semantic and contextual relations.

  7. “Network thinking is poised to invade all domains of human activity and most fields of human inquiry. It is more than another helpful perspective or tool. Networks are by their very nature the fabric of most complex systems, and nodes and links deeply infuse all strategies aimed at approaching our interlocked universe.” (Barabási 2002, p. 222).

  8. Attributes could themselves be represented as nodes, as in (Jones 1986) and following on our use of index nodes to represent cues. However, for illustrative purposes we use a simpler formulation of nodes with self-contained semantics here; a simple device such as an inverted index (Salton and McGill 1983) can then be used to retrieve all nodes that contain a given attribute.

References

  • Adamic, L. A. (1999). The small world web. In S. Abiteboul & A. Vercoustre (Eds.), Proceedings of the European Conference on Digital Libraries (ECDL99); Lecture Notes in Computer Science, Vol. 1696 (pp. 443–452). Springer-Verlag.

  • Albert, R., Jeong, H., & Barabási, A.-L. (1999). Internet: Diameter of the world-wide web. Nature, 401(6749), 130–131.

    Article  Google Scholar 

  • Amedi, A., von Kriegstein, K., van Atteveldt, N. M., Beauchamp, M. S., & Naumer, M. J. (2005). Functional imaging of human crossmodal identification and object recognition. Experimental Brain Research, 166(3–4), 559–572.

    Article  Google Scholar 

  • Anderson, J. R. (1983). A spreading activation theory of memory. Journal of Verbal Learning and Verbal Behavior, 22(3), 261–295.

    Article  Google Scholar 

  • Anderson, J. R. (1989). A rational analysis of human memory. In H. L. Roediger III & F. I. M. Craik (Eds.), Varieties of memory and consciousness: Essays in honor of Endel Tulving (Chap. 11, pp. 195–210). Hillsdale, NJ: Lawrence Erlbaum Associates.

  • Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebière, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111(4), 1036–1060.

    Article  Google Scholar 

  • Anderson, J. R., & Bower, G. H. (1973). Human associative memory. V.H. Winston.

  • Anderson, J. R., & Schooler, L. J. (1991). Reflections of the environment in memory. Psychological Science, 2(6), 396–408.

    Article  Google Scholar 

  • Autonomy (2007). Autonomy Corporation plc (LSE: AU.). Corporate home page accessed on the World Wide Web; Retrieved September 20, 2007, from http://www.autonomy.com

  • Baars, B. J. (1993). How does a serial, integrated and very limited stream of consciousness emerge from a nervous system that is mostly unconscious, distributed, parallel and of enormous capacity? CIBA Foundation Symposium, 174, 282–290.

    Google Scholar 

  • Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. Bower (Ed.), The psychology of learning and motivation, Vol. 8. New York: Academic Press.

  • Baecker, R., Grudin, J., Buxton, W., & Greenberg, S. (1995). Readings in human–computer interaction (2nd ed.). Morgan Kaufmann Series in Interactive Technologies. Morgan Kaufmann.

  • Bahrick, H. P. (1984). Semantic memory content in permastore. Journal of Experimental Psychology: General, 113(1), 1–29.

    Article  Google Scholar 

  • Barabási, A.-L. (2002). Linked: The new science of networks. Cambridge, MA: Perseus Publishing.

    Google Scholar 

  • Barnard, K., & Forsyth, D. (2001). Learning the semantics of words and pictures. In Proceedings of the Eighth IEEE International Conference on Computer Vision, ICCV 2001, Vol. 2, pp. 408–415.

  • Barsalou, L. W. (1983). Ad hoc categories. Memory & Cognition, 11(3), 211–227.

    Google Scholar 

  • Barsalou, L. W., & Sewell, D. R. (1984). Constructing representation of categories from different points of view. Emory Cognition Project Report No. 2. Emory University Press.

  • Bertel, S., Obendorf, H., & Richter, K.-F. (2004). User-centered views and spatial concepts for navigation in information spaces. Technical report. SFB/TR 8 Spatial Cognition.

  • Blank, M. A., & Foss, D. J. (1978). Semantic facilitation and lexical access during sentence processing. Memory & Cognition, 6(6), 644–652.

    Google Scholar 

  • Bransford, J. D., & Franks, J. J. (1971). The abstraction of linguistic ideas. Cognitive Psychology, 2, 331–350.

    Article  Google Scholar 

  • Bransford, J. D., & Johnson, M. K. (1973). Consideration of some problems of comprehension. In W. Chase (Ed.), Visual information processing, Vol. 2 (pp. 331–350). New York: Academic Press.

  • Brewer, W. F., & Treyens, J. C. (1981). Role of schemata in memory for places. Cognitive Psychology, 13, 207–230.

    Article  Google Scholar 

  • Brooks, L. R. (1978). Nonanalytic concept formation and memory for instances. In E. Rosch & B. B. Lloyd (Eds.), Cognition and Categorization (pp. 170–211). Hillsdale, NJ: Lawrence Erlbaum Associates.

  • Burgess, C., & Lund, K. (2000). The Dynamics of meaning in memory. In E. Dietrich & A. Markman (Eds.), Cognitive dynamics: Conceptual and representational change in humans and machines (pp. 117–156). Hillsdale, NJ: Lawrence Erlbaum Associates.

  • Bush, V. (1945). As we may think. Atlantic Monthly, 176(1), 101–108.

    Google Scholar 

  • Cariani, P. (2001). Symbols and dynamics in the brain. Biosystems, 60(1–3), 59–83.

    Article  Google Scholar 

  • Carroll, J. B., & Whorf, B. L. (1956). Language, thought, and reality: Selected writings. MIT Press.

  • Chomsky, N. A. (1965). Aspects of the theory of syntax. MIT Press.

  • Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407–428.

    Article  Google Scholar 

  • Collins, A. M., & Quillian, M. R. (1969). Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior, 8(2), 240–248.

    Article  Google Scholar 

  • Cowan, N. (2000). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–185.

    Article  Google Scholar 

  • Crestani, F. (1997). Application of spreading activation techniques in information retrieval. Artificial Intelligence Review, 11, 453–482.

    Article  Google Scholar 

  • Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391–407.

    Article  Google Scholar 

  • Denham, M., & Tarassenko, L. (2003). Sensory processing. Technical report. Foresight Cognitive Systems Project Research Review.

  • Dey, A. K., & Abowd, G. D. (2000). CybreMinder: A context-aware system for supporting reminders. In Handheld and ubiquitous computing; Lecture Notes in Computer Science, Vol. 1927 (pp. 172–186). Springer-Verlag.

  • Dumais, S. T., Cutrell, E., Cadiz, J. J., Jancke, G., Sarin, R., & Robbins, D. C. (2003). Stuff I’ve seen: A system for personal information retrieval and re-use. In SIGIR 2003: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, July 28–August 1, 2003, Toronto, Canada, pp. 72–79. ACM.

  • Einstein, G. O., & McDaniel, M. A. (1990). Normal aging and prospective memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(4), 717–726.

    Article  Google Scholar 

  • Ekman, P. (1971). Universals and cultural differences in facial expressions of emotion. In J. Cole (Ed.), Nebraska Symposium on Motivation 1971, Vol. 19, pp. 207–284. University of Nebraska Press.

  • Fertig, S., Freeman, E., & Gelernter, D. (1996). Lifestreams: An alternative to the desktop metaphor. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI ’96), pp. 410–414. ACM Press.

  • Fodor, J. A. (1975). The language of thought. New York: Crowell.

    Google Scholar 

  • Foltz, P. W. (1991). Models of human memory and computer information retrieval: Similar approaches to simiar problems. Technical report.

  • Frank, S. L., Koppen, M., Noordmana, L. G. M., & Vonk, W. (2003). Modeling knowledge-based inferences in story comprehension. Cognitive Science, 27, 875–910.

    Article  Google Scholar 

  • Gemmell, J., Bell, G., Lueder, R., Drucker, S., & Wong, C. (2002). MyLifeBits: Fulfilling the memex vision. In Proceedings of ACM Multimedia ’02, December 1–6, 2002, Juan-les-Pins, France, pp. 235–238. ACM Press.

  • Gillund, G., & Shiffrin, R. M. (1984). A retrieval model for both recognition and recall. Psychological Review, 91, 1–67.

    Article  Google Scholar 

  • Goertzel, B. (1997). From complexity to creativity: Explorations in evolutionary, autopoietic, and cognitive dynamics. IFSR International Series on Systems Science and Engineering. Plenum Press.

  • Habib, R., Nyberg, L., & Tulving, E. (2003). Hemispheric asymmetries of memory: The HERA model revisited. Trends in Cognitive Sciences, 7(8), 241–245.

    Article  Google Scholar 

  • Harary, F. (1969). Graph theory. Addison-Wesley.

  • Hebb, D. O. (1949). The organization of behavior. John Wiley.

  • Hintzman, D. L. (1984). Minerva 2: A simulation model of human memory. Behavior Research Methods, Instruments, & Computers, 16(2), 96–101.

    Google Scholar 

  • Hoffman, R. R., Klein, G., & Laughery, K. R. (2002). The state of cognitive systems engineering. Intelligent Systems, 17(1), 73–75.

    Article  Google Scholar 

  • Hunt, E., & Waller, D. (1999). Orientation and wayfinding: A review. Technical Report N00014-96-0380, Arlington, VA. Office of Naval Research.

  • Huyck, C. R. (2001). Cell assemblies as an intermediate level model of cognition. In S. Wermter, J. Austin, & D. Willshaw (Eds.), Emergent neural computational architectures based on neuroscience: Towards neuroscience-inspired computing, Vol. 2036 (pp. 383–397). Springer-Verlag.

  • Jacoby, L. L., & Witherspoon, D. (1982). Remembering without awareness. Canadian Journal of Psychology, 36, 300–324.

    Google Scholar 

  • Johnson, T. R. (1997). Control in ACT-R and soar. In M. Shafto & P. Langley (Eds.), Proceedings of the Nineteenth Annual Conference of the Cognitive Science Society, pp. 343–348. Hillsdale, NJ: Lawrence Erlbaum Associates.

  • Jones, W. P. (1986). The memory extender personal filing system. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 298–305. ACM Press.

  • Kahneman, D., & Treisman, A. (1984). Changing views of attention and automaticity (pp. 29–61). Varieties of Attention. New York: Academic Press.

  • Kintsch, W. (1974). The representation of meaning in memory. Halsted Press.

  • Kleinberg, J. M. (2000). Navigation in a small world. Nature, 406, 845.

    Article  Google Scholar 

  • Koller, D., & Sahami, M. (1997). Hierarchically classifying documents using very few words. In Proceedings of the 14th International Conference on Machine Learning (ML), Nashville, Tenessee, July 1997, pp. 170–178.

  • Labov, W. (1973). The boundaries of words and their meaning. New ways of analyzing variation in english, Vol. 42 (pp. 340–373). Georgetown Press.

  • Lakoff, G. (1987). Women, fire, and dangerous things: What categories reveal about the mind. University of Chicago Press.

  • Lamming, M., & Flynn, M. (1994). “Forget-Me-Not”—intimate computing in support of human memory. In Proceedings of FRIEND21 ’94 International Symposium on Next Generation Human Interfaces, pp. 1–9. Rank Xerox Research Center.

  • Landauer, T. K. (2002). On the computational basis of learning and cognition: Arguments from LSA. In N. Ross (Ed.), The psychology of learning and motivation, Vol. 41 (Chap. 13, pp. 43–84). New York: Academic Press.

  • Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211–240.

    Article  Google Scholar 

  • Landauer, T. K., Laham, D., & Foltz, P. W. (1998). Learning human-like knowledge by singular value decomposition: A progress report. In M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.), Advances in neural information processing systems (Chap. 10, pp. 45–51). Cambridge: MIT Press.

  • Lemaire, B., & Denhière, G. (2004). Incremental construction of an associative network from a corpus. In K. Forbus, D. Gentner, & T. Regier (Eds.), Proceedings of the 26th Annual Meeting of the Cognitive Science Society, pp. 825–830. Hillsdale, NJ: Lawrence Erlbaum Associates.

  • Loftus, E. F., & Palmer, J. C. (1974). Reconstruction of automobile destruction: An example of the interaction between language and memory. Journal of Verbal Learning and Verbal Behavior, 13, 585–589.

    Article  Google Scholar 

  • Mandler, J. M. (1984). Stories, scripts, and scenes: Aspects of schema theory. Hillsdale, NJ: Lawrence Erlbaum Associates.

  • Marr, D. (1982). Vision : A computational investigation into the human representation and processing of visual information. W.H. Freeman.

  • Matsuo, Y., & Ishizuka, M. (2004). Keyword extraction from a single document using word co-occurrence statistical information. International Journal of Artificial Intelligence Tools, 13(1), 157–169.

    Article  Google Scholar 

  • McClelland, J. L., & Kawamoto, A. H. (1986). Mechanisms of sentence processing: Assigning roles to constituents. In J. L. McClelland, D. E. Rumelhart, & the PDP Research Groups (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition, Vol. 2: Psychological and biological models (pp. 318–362). MIT Press.

  • McRae, K., de Sa, V. R., & Seidenberg, M. S. (1997). On the nature and scope of featural representations of word meaning. Journal of Experimental Psychology: General, 126(3), 99–130.

    Article  Google Scholar 

  • Medin D. L., & Schaffer M. M. (1978). Context theory of classification. Psychological Review, 85, 207–238.

    Article  Google Scholar 

  • Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90(2), 227–234.

    Article  Google Scholar 

  • Milgram, S. (1967). The small world problem. Psychology Today, 1, 60–67.

    Google Scholar 

  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. The Psychological Review, 63, 81–97.

    Article  Google Scholar 

  • MindManager (2007). MindJet: Software for visualizing and managing information. Corporate home page accessed on the World Wide Web; Retrieved September 20, 2007, from http://www.mindjet.com

  • Moll, M., Miikkulainen, R., & Abbey, J. (1994). The capacity of convergence-zone episodic memory. In Proceedings of the 12th National Conference on Artificial Intelligence, AAAI-94, pp. 68–73. MIT Press.

  • Moravec, H. (1998). ROBOT: Mere machine to transcendent mind. Oxford University Press.

  • Moreno-Seco, F., Micó, L., & Oncina, J. (2003). Extending fast nearest neighbour search algorithms for approximate k-NN classification. In Pattern recognition and image analysis; Lecture Notes in Computer Science, Vol. 2652 (pp. 589–597). Springer-Verlag.

  • Motter, A. E., de Moura, A. P. S., Lai, Y.-C., & Dasgupta, P. (2002). Topology of the conceptual network of language. Physical Review E, 65(6), Art. No. 065102 Part 2.

  • Munakata, Y. (2004). Computational cognitive neuroscience of early memory development. Developmental Review, 24(1), 133–153.

    Article  MathSciNet  Google Scholar 

  • Nason, S., & Laird, J. E. (2005). Soar-RL: Integrating reinforcement learning with soar. Cognitive Systems Research, 6(1), 51–59.

    Article  Google Scholar 

  • Nosofsky, R. M. (1984). Choice, similarity, and the context theory of classification. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(1), 104–114.

    Article  Google Scholar 

  • Osgood, C. E. (1952). The nature and measurement of meaning. Psychological Bulletin, 49(3), 197–233.

    Article  Google Scholar 

  • Osgood, C. E., May, W., & Miron, M. (1975). Cross-cultural universals of affective meaning. University of Illinois Press.

  • Perugini, S., Gonçalves, M. A., & Fox, E. A. (2004). Recommender systems research: A connection-centric survey. Journal of Intelligent Information Systems, 23(2), 107–143.

    Article  MATH  Google Scholar 

  • Posner, M. I., & Keele, S. W. (1970). Retention of abstract ideas. Journal of Experimental Psychology, 83, 304–308.

    Article  Google Scholar 

  • Pulvermüller, F. (1999). Words in the brain’s language. Behavioral and Brain Sciences, 22(2), 253–336.

    Article  Google Scholar 

  • Quillian, M. R. (1969). The teachable language comprehender: A simulation program and theory of language. Communications of the ACM, 12(8), 459–476.

    Article  Google Scholar 

  • Raaijmakers, J. G. W., & Shiffrin, R. M. (1981). Search of associative memory. Psychological Review, 88, 93–143.

    Article  Google Scholar 

  • Rabinowitz, F. M., & Andrews, S. S. R. (1973). Intentional and incidental learning in children and the von Restorff Effect. Journal of Experimental Psychology, 100(2), 315–318.

    Article  Google Scholar 

  • Rainsford, C. P., & Roddick, J. F. (1999). Database issues in knowledge discovery and data mining. Australian Journal of Information Systems, 6(2), 101–128.

    Google Scholar 

  • Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive Psychology, 7, 573–605.

    Article  Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., & McClelland, J. L. (1986). A general framework for parallel distributed processing. In D. E. Rumelhart, J. L. McClelland, & the PDP Research Groups (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 1: Foundations. MIT Press.

  • Russell, S., & Norvig, P. (1995). Artificial intelligence: A modern approach. Englewood Cliffs, NJ: Prentice Hall.

  • Salton, G., & McGill, M. (1983). An introduction to modern information retrieval. McGraw-Hill.

  • Schlögl, C. (2005). Information and knowledge management: dimensions and approaches. Information Research, 10(4), 16.

    Google Scholar 

  • Sharps, M. J., Villegas, A. B., Nunes, M. A., & Barber, T. L. (2002). Memory for animal tracks: A possible cognitive artifact of human evolution. Journal of Psychology, 136(5), 469–492.

    Article  Google Scholar 

  • Shrager, J., Hogg, T., & Huberman, B. A. (1987). Observation of phase transitions in spreading activation networks. Science, 236(4805), 1092–1094.

    Article  Google Scholar 

  • Sigman, M., & Cecchi, G. A. (2002). Global organization of the Wordnet lexicon. Proceedings of the National Academy of Sciences, 99(3), 1742–1747.

    Article  Google Scholar 

  • Simons, J. S., Schölvinck, M. L., Gilbert, S. J., Frith, C. D., & Burgess, P. W. (2006). Differential components of prospective memory? Evidence from fMRI. Neuropsychologia, 44, 1388–1397.

    Article  Google Scholar 

  • Skinner, B. F. (1977). Why I am not a cognitive psychologist. Behaviorism, 5, 1–10.

    Google Scholar 

  • Smith, B. C. (1996). On the origin of objects. MIT Press.

  • Smith, E. E., Shoben, E. J., & Rips, L. J. (1974). Structure and process in semantic memory: A featural model for semantic decisions. Psychological Review, 81, 214–241.

    Article  Google Scholar 

  • Sowa, J. F. (1991). Principles of semantic networks: Exploration in the representation of knowledge. Mogan Kaufmann Series in Representation and Reasoning. Morgan Kaufmann.

  • Steyvers, M., & Tenenbaum, J. (2005). Small worlds in semantic networks. Cognitive Science, 29(1), 41–78.

    Article  Google Scholar 

  • Taatgen, N., Lebière, C., & Anderson, J. R. (2006). Modeling paradigms in ACT-R. In R. Sun (Ed.), Cognition and multi-agent interaction from cognitive modeling to social simulation. Cambridge University Press.

  • Teevan, J., Alvarado, C., Ackerman, M. S., & Karger, D. R. (2004). The perfect search engine is not enough: A study of orienteering behavior in directed search. In CHI ’04: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 415–422. ACM Press.

  • TheBrain (2007). TheBrain Technologies Corporation. Corporate home page accessed on the World Wide Web; Retrieved September 20, 2007, from http://www.thebrain.com

  • Thornton, C. (2000). Truth from trash: How learning makes sense. MIT Press.

  • Todd, P. M., & Gigerenzer, G. (2000). Précis of simple heuristics that make us smart. Behavioral and Brain Sciences, 23, 727–780.

    Article  Google Scholar 

  • Tranel, D., & Jones, R. D. (2006). Knowing “what” and knowing “when”. Journal of Clinical and Experimental Neuropsychology, 28(1), 43–66.

    Article  Google Scholar 

  • Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.) Organization of memory (pp. 381–403). New York: Academic Press.

  • Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval process in episodic memory. Psychological Review, 80(5), 352–373.

    Article  Google Scholar 

  • Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327–352.

    Article  Google Scholar 

  • Vinson, N. G. (1999). Design guidelines for landmarks to support navigation in virtual environments. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: The CHI is the Limit, pp. 278–285. ACM Press.

  • Wang, Y., & Liu, D. (2003). On information and knowledge representation in the brain. In Proceedings of the Second IEEE International Conference on Cognitive Informatics (ICCI’03).

  • Want, R., Hopper, A., Falcao, V., & Gibbons, J. (1992). The active badge location system. ACM Transactions on Information Systems (TOIS), 10, 91–102.

    Article  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small world’ networks. Nature, 393(6684), 440–442.

    Article  Google Scholar 

  • Whittaker, S., & Hirschberg, J. (2001). The character, value, and management of personal paper archives. ACM Transactions on Computer-Human Interaction (TOCHI), 8(2), 150–170.

    Article  Google Scholar 

  • Wickens, C. D., & Hollands, J. G. (1999). Engineering psychology and human performance (3rd ed.). Prentice Hall.

  • Witten, I. H., Moffat, A., & Bell, T. C. (1999). Managing gigabytes: Compressing and indexing documents and images. Morgan Kaufmann.

  • Woods, W. A. (1975). What’s in a link: Foundations for semantic networks. In D. G. Bobrow & A. M. Collins (Eds.), Representation and understanding (pp. 35–82). New York: Academic Press.

  • Wynn, T., & Coolidge, F. L. (2004). The expert neandertal mind. Journal of Human Evolution, 46(4), 467–487.

    Article  Google Scholar 

  • Yamaguchi, S., Isejima, H., Matsuo, T., Okura, R., Yagita, K., Kobayashi, M., & Okamura, H. (2003). Synchronization of cellular clocks in the suprachiasmatic nucleus. Science, 302(5649), 1408–1412.

    Article  Google Scholar 

  • Zha, H., & Simon, H. D. (1999). On updating problems in latent semantic indexing. SIAM Journal on Scientific Computing, 21(2), 782–791.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Joel Lanir and Heidi Lam for their thoughtful insight and helpful comments. This paper was supported in part by NSERC postgraduate scholarships PGS B-267320 and IPS 2-268129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Huggett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huggett, M., Hoos, H. & Rensink, R. Cognitive Principles for Information Management: The Principles of Mnemonic Associative Knowledge (P-MAK). Minds & Machines 17, 445–485 (2007). https://doi.org/10.1007/s11023-007-9080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11023-007-9080-4

Keywords

Navigation