Skip to main content
Log in

Determinism, predictability and open-ended evolution: lessons from computational emergence

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Among many properties distinguishing emergence, such as novelty, irreducibility and unpredictability, computational accounts of emergence in terms of computational incompressibility aim first at making sense of such unpredictability. Those accounts prove to be more objective than usual accounts in terms of levels of mereology, which often face objections of being too epistemic. The present paper defends computational accounts against some objections, and develops what such notions bring to the usual idea of unpredictability. I distinguish the objective unpredictability, compatible with determinism and entailed by emergence, and various possibilities of predictability at emergent levels. This makes sense of practices common in complex systems studies that forge qualitative predictions on the basis of comparisons of simulations with multiple values of parameters. I consider robustness analysis as a way to ensure the ontological character of computational emergence. Finally, I focus on the property of novelty, as it is displayed by biological evolution, and ask whether computer simulations of evolution can produce the same kind of emergence as the open-ended evolution attested in Phanerozoic records.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adami C. (2002) What is complexity. Bio Essays 24: 1085–1094

    Google Scholar 

  • Adami C., Ofria C., Collier T. C. (2000) Evolution of biological complexity. Proceedings of the National Academy of Sciences USA 97(9): 4463–4468

    Article  Google Scholar 

  • Amundson R. (2005) The changing role of the embryo in evolutionary theory. Cambridge University Press, Cambridge

    Google Scholar 

  • Arthur W. (2001) The origins of animal body plan. Oxford University Press, Oxford

    Google Scholar 

  • Barabasi A.-L., Albert R. (1999) Emergence of scaling in random networks. Science 286: 509–512

    Article  Google Scholar 

  • Batterman R. (2002) The devil in the details. Oxford University Press, Oxford

    Google Scholar 

  • Bedau M. (1997) Weak emergence. In: Tomberlin J. (eds) Philosophical perspectives: Mind, causation, and world. Blackwell Publishers, Oxford, pp 375–399

    Google Scholar 

  • Bedau, M. (1999). Can unrealistic computer models illuminate theoretical biology. In A. Wu (Ed.), Proceedings of the 1999 genetic and evolutionary computation conference workshop program (pp. 20–23). Florida.

  • Bedau M. (2003) Downward causation and the autonomy of weak emergence. Principia, Revista Internacional de Epistemologia 6: 5–50

    Google Scholar 

  • Bedau M. (2008) Is weak emergence just in the mind? Minds & Machines 18: 443–459

    Article  Google Scholar 

  • Bedau M., Snyder, Packard N. et al (1998) A classification of long-term evolutionary dynamics. In: Adami C. (eds) Artificial life VI. MIT Press, Cambridge, MA, pp 189–198

    Google Scholar 

  • Bell G., Lechowicz M., Waterway M. (2006) The comparative evidence relating to functional and neutral interpretations of biological communities. Ecology 87(6): 1378–1386

    Article  Google Scholar 

  • Brandon R. (1996) Adaptation and environment. Princeton University Press, Princeton

    Google Scholar 

  • Burke M., Furnier G., Prasad K. (2006) The emergence of local norms in networks. Complexity 11(5): 65–83

    Article  Google Scholar 

  • Buss S., Papadimitriou C., Tsisiklis J. (1992) On the predictability of coupled automata: An allegory about chaos. Complex Systems 5: 525–539

    Google Scholar 

  • Carroll S. (2005) Endless forms most beautiful. Norton, New York

    Google Scholar 

  • Chalmers D. (2006) Strong and weak emergence. In: Clayton P., Davies P. (eds) The reemergence of emergence. Oxford University Press, Oxford, pp 244–256

    Google Scholar 

  • Channon A., Damper R. (1998) Perpetuating evolutionary emergence. In: Pfeifer R., Blumberg B., Meyer J. A., Wilson S. (eds) From animals to animats. MIT Press, Cambridge, MA, pp 534–539

    Google Scholar 

  • Channon A., Damper R. I. (2000) Towards the evolutionary emergence of complex increasingly advantageous behaviours. International Journal of Systems Science 31(7): 843–860

    Article  Google Scholar 

  • Chave J. (2004) Neutral theory and community ecology. Ecology Letters 7: 241–253

    Article  Google Scholar 

  • Corning P. (2002) The re-emergence of “emergence”: A venerable concept in search of a theory. Complexity 7(6): 18–30

    Article  Google Scholar 

  • Cracraft J. (2000) The origin of evolutionary novelties: Pattern and process at different hierarchical levels. In: Nitecki M. (eds) Evolutionary innovations. University of Chicago Press, Chicago, pp 21–43

    Google Scholar 

  • Crutchfield, J. (1994). The Calculi of emergence. Physica D, special issue on the Proceedings of the Oji International Seminar. Complex Systems—from Complex Dynamics to Artificial Reality.

  • Crutchfield J. (2002) When evolution is revolution: Origins of innovation. In: Crutchfield J., Schuster P. (eds) Evolutionary dynamics: Exploring the interplay between accident, selection, neutrality and function. Oxford University Press, Oxford, pp 101–133

    Google Scholar 

  • Crutchfield J., Hanson J. (1993) Turbulent pattern bases for cellular automata. Physica D 69: 279–301

    Article  Google Scholar 

  • Crutchfield J., Mitchell M., Hraber D. (1993) Revisiting the edge of chaos: Evolving cellular automata to perform computations. Complex Systems 7: 89–130

    Google Scholar 

  • Dennett D. (1995) Darwin’s dangerous idea. Simon & Shuster, New-York

    Google Scholar 

  • Epstein J. (1999) Agent based computational model and generative social science. In: Epstein J. (eds) Generative social science. Princeton University Press, Princeton, pp 1–46

    Google Scholar 

  • Epstein J. (2002) Modeling civil violence. PNAS 99(3): 7243–7250

    Article  Google Scholar 

  • Fontana W., Buss L. (1994) What would be conserved if “the tape were played twice? PNAS 91: 757–761

    Article  Google Scholar 

  • Fry I. (1995) Are the different hypotheses on the emergence of life as different as they seem? Biology and Philosophy 10: 389–417

    Article  Google Scholar 

  • Gavrilets S. (2003) Evolution and speciation in a hyperspace: The roles of neutrality, selection, mutation and random drift. In: Schuster P., Crutchfield J. (eds) Evolutionary dynamics: Exploring the interplay of selection, accident, neutrality and function. Oxford University Press, Oxford, pp 135–162

    Google Scholar 

  • Gould S. J. (1989) Wonderful life: The Burgess Shale and the nature of history. W. W. Norton, New York

    Google Scholar 

  • Holland J. (1995) Hidden order: How adaptation builds complexity. Addison-Wesley, New-York

    Google Scholar 

  • Holland J. (1998) Emergence: From chaos to order. Basic Books, New York

    Google Scholar 

  • Holyoak M., Loreau M. (2006) Reconciling empirical ecology with neutral community models. Ecology 87(6): 1370–1377

    Article  Google Scholar 

  • Hovda P. (2008) Quantifying weak emergence. Minds & Machines 18: 461–473

    Article  Google Scholar 

  • Hubbell S. P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Humphreys P. (1997) How properties emerge. Philosophy of Science 64: 53–70

    Article  Google Scholar 

  • Humphreys P. (2008) Synchronic and diachronic emergence. Minds & Machines 18: 431–442

    Article  Google Scholar 

  • Humphreys, P., & Huneman, P. (Eds.). (2008). Special issue on dynamic emergence and computation. Minds and Machines, 18.

  • Huneman P. (2008a) Emergence and adaptation. Minds and Machines, special issue on dynamic emergence 18(4): 493–520

    Google Scholar 

  • Huneman P. (2008b) Combinatorial vs. computational views of emergence: Emergence made ontological? Philosophy of Science 75: 595–607

    Article  Google Scholar 

  • Israeli N., Goldenfeld N. (2004) On computational irreducibility and the predictability of complex physical systems. Physics Review Letters 92: 074105

    Article  Google Scholar 

  • Kauffmann S. (1993) The origins of order. Oxford University Press, Oxford

    Google Scholar 

  • Kim J. (1999) Making sense of emergence. Philosophical Studies 95: 3–36

    Article  Google Scholar 

  • Lange M. (1996) Life, “artificial life” and scientific explanations. Philosophy of Science 63: 225–244

    Article  Google Scholar 

  • Langton C. (1989) Artificial life. In: Langton C. (eds) Artificial life: SFI studies in the sciences of complexity, Proc.Vol. VI. Addison-Wesley, Redwood City, CA

    Google Scholar 

  • Levins R. (1966) The strategy of model building in population biology. In: Sober E. (eds) Conceptual issues in evolutionary biology. (1st ed., pp. 18–27). MIT Press, Cambridge, MA

    Google Scholar 

  • Lewis D. (1973) Causation. Journal of Philosophy 70: 556–567

    Article  Google Scholar 

  • Maynard-Smith J., Szathmary E. (1995) The major evolutionary transitions. Freeman, San Francisco

    Google Scholar 

  • McLaughlin B. (1992) The rise and fall of British emergentism. In: Beckermann A., Flohr H., Kim J. (eds) Emergence or reduction? de Gruyter, Berlin, pp 44–93

    Google Scholar 

  • Michod R. (1999) Darwinian dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Müller G. (2002) Novelty and key innovations. In: Pagel M. (eds) Encyclopedia of evolution. Oxford University Press, Oxford, pp 827–830

    Google Scholar 

  • Muller G., Newman S. (2005) The innovation triad: An evodevo agenda. Journal of Experimental Zoology (Mol Dev Evol) 304B: 487–503

    Article  Google Scholar 

  • Newman D. (1996) Emergence and strange attractors. Philosophy of Science 63(2): 245–261

    Article  Google Scholar 

  • Pattee, H. (1989). Simulations, realizations and theories of life. In C. Langton, et al. (Ed.), Artificial life I (pp. 63–78). Redwood City, CA: Addison Wesley.)

  • Ray T. (1992) An approach to the synthesis of life. In: Langton C. (eds) Artificial life II. Addison Wesley, Redwood City, CA, pp 371–408

    Google Scholar 

  • Reynolds C. (1987) Flocks, herds and schools: A distributed behavioural model. Computer Graphics 21(4): 25–34

    Article  Google Scholar 

  • Shalizi, C., & Crutchfield, J. (2008) Computational mechanics: Pattern and prediction, structure and simplicity. Santa Fe Institute Working Paper 99-07-044

  • Shalizi C., & Moore C. (2003). What is a macrostate? Subjective observations and objective dynamics. http://philsci-archive.pitt.edu/archive/00001119/

  • Silberstein M. (2002) Reduction, emergence and explanation. In: Silberstein M., Machamer P. (eds) Blackwell companion to the philosophy of science. Blackwell, Oxford, pp 80–107

    Google Scholar 

  • Tassier T. (2004) A model of fads, fashions and group formations. Complexity 9(5): 51–61

    Article  Google Scholar 

  • Taylor T. (2001) Creativity in evolution: Individuals, interactions and environments. In: Bentley P. J., Corne D. W. (eds) Creative evolutionary systems. Morgan Kaufman, San Francisco, pp 74–108

    Google Scholar 

  • Watson R. (2005) Compositional evolution: The impact of sex, symbiosis and modularity on the gradualist framework of evolution. MIT Press, Cambridge

    Google Scholar 

  • Watts D. J. (2002) A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences 99: 5766–5771

    Article  Google Scholar 

  • Watts D. J., Strogatz S. H. (1998) Collective dynamics of small-world networks. Nature 393: 440–442

    Article  Google Scholar 

  • Weisberg M. (2006a) Robustness analysis. Philosophy of Science 73: 730–742

    Article  Google Scholar 

  • Weisberg M. (2006b) Forty years of “the strategy”: Levins on model building and idealization. Biology and Philosophy 21(5): 623–645

    Article  Google Scholar 

  • Williams G. (1966) Adaptation and natural selection. Princeton University Press, Princeton

    Google Scholar 

  • Wilson, J. (2009). Non-reductive physicalism and degrees of freedom. British Journal for Philosophy of Science, 1–33.

  • Wimsatt W. (1997) Aggregation: Reductive heuristics for finding emergence. Philosophy of Science 64(4): 372–384

    Article  Google Scholar 

  • Wimsatt W. (2007) Emergence as non-aggregativity and the biases of reductionisms. In: Wimsatt W. (eds) Piecewise approximations to reality. Harvard University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Huneman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huneman, P. Determinism, predictability and open-ended evolution: lessons from computational emergence. Synthese 185, 195–214 (2012). https://doi.org/10.1007/s11229-010-9721-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-010-9721-7

Keywords

Navigation