Skip to main content
Log in

Exploring Wavelet Transforms for Morphological Differentiation Between Functionally Different Cat Retinal Ganglion Cells

  • Published:
Brain and Mind

Abstract

Cognition or higher brain activity is sometimes seen as a phenomenon greater than the sum of its parts. This viewpoint however is largely dependent on the state of the art of experimental techniques that endeavor to characterize morphology and its association to function. Retinal ganglion cells are readily accessible for this work and we discuss recent advances in computational techniques in identifying novel parameters that describe structural attributes possibly associated with specific function. These parameters are based on calculating wavelet gradients from cell images followed by the extraction of meaningful measures including 2nd wavelet moment, entropy of orientation, and curvature. For the three cell types analyzed, the mean 2nd wavelet moment, which relates to the field of influence of the dendritic-tree segments was significantly different. β cells had the highest mean 2nd wavelet moment, followed by the α and δ cells (134 ± 22, 93 ± 19 and 63 ± 12, respectively). There was no significant difference between cells for entropy of orientation, indicating no class with a preferential orientation of their dendritic tree. Curvature provided similar results to the 2nd wavelet moment with β cells having the highest curvature followed by α and the δ cells (mean ± SD: 161 ± 15; 134 ± 22; 121 ± 15). Our feature space analysis also indicated a difference between these cell types. No difference was found between the α and β cell types and their physiological counterparts the Y and X cells based on wavelet analysis. Both the X and Y cells can be divided into two subtypes, the ON- and OFF-center cells based on the stratification level of the dendritic tree within the retina. Using 2nd wavelet moment, a difference in their morphological attributes, not reported previously, was noted for these subtypes. The 2nd wavelet moment and curvature are further discussed with respect to explaining regularity of spacing and coverage associated with retinal ganglion cell mosaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alberch, P., 1980: Ontogenesis and morphological diversification, Am. Zool. 20, 653-667.

    Google Scholar 

  • Antoine, J.-P., Carrette, P., Murenzi, R. and Piette, B., 1993: Image analysis with two-dimensional continuous wavelet transform, Signal Process. 31, 241-272.

    Google Scholar 

  • Ascoli, G. A., 1999: Progress and perspective in computational neuroanatomy, Anat. Rec. 257, 195-207.

    Google Scholar 

  • Arnéodo, A., Decoster, N. and Roux, S. G., 2000: A wavelet-based method for multifractal image analysis. I. Methodology and test applications on isotropic and anisotropic random rough surfaces, Eur. Phys. J. B, 15, 567-600, 2000.

    Google Scholar 

  • Boycott, B. B. and Wässle, H., 1974: The morphological types of ganglion cells of the domestic cat's retina. J. Physiol. 109, 133-151.

    Google Scholar 

  • Brown, J. E. and Major, D., 1966: Cat retinal ganglion cell dendritic fields. J. Neurophysiol. 20,1091-1100.

    Google Scholar 

  • Bruno, O. M., Cesar, R. M.Jr., Consularo, L. A. and Costa, L. da F., 1998: Automatic feature selection for biological shape classification in SYNERGOS; in Proc. Brazilian Conference on Computer Graphics, Image Processing and Vision, SIBGRAPI-98, Rio de Janeiro-RJ, Out 1998, IEEE Computer Society Press, pp. 363-370.

  • Cesar, R. M.Jr. and Costa, L. da F., 1998: Neural cell classification by wavelets and multiscale curvature, Biol. Cybern 79(4), 347-360.

    PubMed  Google Scholar 

  • Cesar, R. M.Jr. and Jelinek, H. F., 2003: Segmentation of retinal fundus vasculature in non-mydriatic camera images using wavelets, in J. Suri and T. Laxminarayan (eds.), Angiography and Plaque Imaging: Advanced Segmentation Techniques, CRC Press, New York.

    Google Scholar 

  • Cook, J. E., 1996: Spatial properties of retinal mosaics: an empirical evaluation of some existing measures. Vis. Neurosci. 13, 15-30.

    PubMed  Google Scholar 

  • Cook, J. E. and Chapula, L. M., 2000: Retinal mosaics: New insights into old concepts. tans, 23(1), 26-34.

    Google Scholar 

  • Costa, L. F. and Cesar, R. M., Jr., 2001: Shape Analysis and Classification: Theory and Practice, CRC Press, Boca Raton, Fl.

    Google Scholar 

  • Costa, L. da F., Rios-Filho, L. G., Tanaka, J. S. and Manoel, E. T. M., 2001: Morphological roles of simulated neurons in volume transmission, in R. R. Poznanski (ed.), Biophysical Neural Networks, Mary Ann Liebert, New York, pp. 43-74.

    Google Scholar 

  • Costa, L. F. and Velte, T. J., 1999: Automatic characterization and classification of ganglion cells from the salamander retina. J. Comp. Neurol 404(1), 35-51.

    Google Scholar 

  • Dacey, D. M., 1989: Monoamine-accumulating ganglion cell type of the cat's retina. Comp. Neurol. 288, 59-80.

    Google Scholar 

  • Dowling, J. E., 1979: Information processing by local circuits: The vertebrate retina as a model system, in F. O. Schmitt and F. Gworden (eds.), The Neurosciences 4th Study Program, MIT Press, Cambridge, MA, pp. 163-182.

    Google Scholar 

  • Enroth-Cugell, C. and Robson, J. G., 1966: The contrast sensitivity of ganglion cells of the cat. J. Physiol. 298, 235-250.

    Google Scholar 

  • Estrozi, L. F., Rios, L. G., Bianchi, A. G. C., Cesar, R. M. Jr. and Costa, L. da F., in press: 1D and 2D Fourier-based approaches to numeric curvature estimation and their comparative performance assessment, Dig. Sig. Proc..

  • Famiglietti, E. V. and Kolb, H., 1976: Structural basis of “On” and “Off” centre responses in retinal ganglion cells. Science 194, 193-195.

    PubMed  Google Scholar 

  • Fernandez, E. and Jelinek, H. F., 2001: Use of fractal theory in neuroscience: Methods, advantages and potential problems. Meth 244, 309-321.

    Google Scholar 

  • Hartline, H. K., 1938: The response of single optic nerve fibres of the vertebrate eye to illumination of the retina. Am. J. Physiol. 89, 717-743.

    Google Scholar 

  • Isayama, T., Berson, D. M. and Pu, M., 2000: Theta ganglion cell type of the cat retina. J. Comp. Neurol. 417, 32-48.

    PubMed  Google Scholar 

  • Jelinek, H. F., Jones, C. and Warfel, M. D., (1998): Is there meaning in fractal analysis, in R. Standish et al. (ed.), Complex Systems’ Conference 98, UNSW, Sydney, pp. 144-149.

    Google Scholar 

  • Jelinek, H. F. and Spence, I., 1997: Categorisation of physiologically and morphologically characterized nonalpha/ non-beta cat retinal ganglion cells using fractal geometry. Fractals, 5(4), 673-684.

    Google Scholar 

  • Jones, C. and Jelinek, H. F., 2001:Wavelet packet fractal analysis of neuronal morphology. Meth. 24(4), 347-358.

    Google Scholar 

  • Kier, C. K., Buchsbaum, G. and Sterling, P., 1995: How retinal microcircuits scale for ganglion cells of different size. J. Neurosci. 15(11), 7673-7683.

    PubMed  Google Scholar 

  • Koch, C., Poggio, T. and Torres, V., 1982: Retinal ganglion cells: A functional interpretation of dendritic morphology. Phil. Trans, R. Soc. Lond. B. 298, 227-264.

    Google Scholar 

  • Kolb, H., Nelson, R. and Mariani, A., 1981: Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study. Vis. Res. 21, 1081-1114.

    PubMed  Google Scholar 

  • Kuffler, S. W., 1953: Discharge patterns and functional organisation retina. J. Neurophys. 16, 37-68.

    Google Scholar 

  • Leicester, J. and Stone, J., 1967: Ganglion, amacrine and horizontal cells of the cat's retina. Vis. Res. 7, 695-705.

    PubMed  Google Scholar 

  • Leventhal, A., Rodieck, R.W. and Dreher, B., 1985: Central projections of the cat retinal ganglion cells. J. Comp. Neurol. 237, 216-226.

    PubMed  Google Scholar 

  • Leventhal, A. and Schall, J., 1983: Structural basis of orientation sensitivity of cat retinal ganglion cells. J. Comp. Neurol. 220, 465-475.

    PubMed  Google Scholar 

  • Levick, W. R., 1975: Form and function of the cat retinal ganglion cells. Nature 254, 659-662.

    PubMed  Google Scholar 

  • Levick, W. R. and Thibos, L. N., 1983: Analysis of orientation bias in the cat retina. J. Physiol. 329, 243-261.

    Google Scholar 

  • Montague, P. R. and Friedlander, M. J., 1991: Morphogenesis and territorial coverage by isolated mammalian retinal ganglion cells. J. Neurosci. 11(5), 1440-1457.

    PubMed  Google Scholar 

  • Morigiwa, K., Tauchi, M. and Fukuda, Y., 1989: Fractal analysis of ganglion cell dendritic branching patterns of the rat and cat retinae. Neurosci. Res. Suppl. S131-S140.

  • Panico, J. and Sterling, P., 1995: Retinal neurones and vessels are not fractal but space filling. J. Comp. Neurol. 361, 479-490.

    PubMed  Google Scholar 

  • Peichl, L., 1989: Alpha and delta ganglion cells in the rat retina. J. Comp. Neurol. 286, 120-139.

    PubMed  Google Scholar 

  • Pinto, S. C. D., Cesar, R. M.Jr., Gokcay, D. and Costa, L. da F., 2002: 3D morphological analysis of brain MRI using wavelets, in A. N. Skodras and A. G. Constantinides (eds.), Proceedings of DSP 2002-14th International Conference on Digital Signal Processing, Typorama/IEEE, pp. 399-402.

  • Reece, B. E. and Galli-Resta, L., 2002: The role of tangential dispersion in retinal mosaic formation. Prog. Retin. Eye Res. 21, 153-168.

    PubMed  Google Scholar 

  • Robinson, D. W. and Chalupa, L. M., 1997: The intrinsic temporal properties of alpha and beta retinal ganglion cells are equivalent. Curr. Biol. 7, 366-374.

    PubMed  Google Scholar 

  • Rodieck, R.W., 1991: The density recovery profile: A method for the analysis of points in the plane applicable to retinal studies. Vis. Neurosci. 6, 95-111.

    PubMed  Google Scholar 

  • Rodieck, R. W. and Brening, R. K., 1983: Retinal ganglion cells: Properties, types, genera, pathways and transspecies comparisons. Brain, Behav. Evol. 23, 121-164.

    Google Scholar 

  • Rowe, M. H. and Stone, J., 1977: Naming of neurons. Brain, Behav. Evol. 14, 185-216.

    Google Scholar 

  • Saito, H., 1983: Morphology of physiologically identified X-, Y-, and W-type retinal ganglion cells of the cat. J. Comp. Neurol. 211, 279-288.

    Google Scholar 

  • Shkolnik-Yarros, E. G., 1971: Neurons of the cat retina. Vis. Res. 11, 7-26.

    PubMed  Google Scholar 

  • Stanford, L. R., 1987: X-cells in the cat retina: Relationships between morphology and physiology of a class of cat retinal ganglion cells. J. Neurophys. 58(5), 940-963.

    Google Scholar 

  • Stanford, L. R. and Sherman, M. S., 1984: Structure/function relationships of retinal ganglion cells in the cat. Brain Res. 297, 381-386.

    PubMed  Google Scholar 

  • Stone, J., 1983: Parallel Processing in the Visual System, Plenum, New York.

    Google Scholar 

  • Theodoridis, S. and Koutroumbas, K., 1999: Pattern Recognition, Academic Press, New York.

    Google Scholar 

  • Thompson, D. W., 1992: On Growth and Form, Canto edn. Cambridge University Press, Cambridge.

    Google Scholar 

  • Troy, J. B. and Shou, T., 2002: The receptive field of cat retinal ganglion cells in physiological and pathological states: Where are we after half a century of research. Prog. Ret. Eye Res. 21, 263-302.

    Google Scholar 

  • Tyner, C. F., 1975: The naming of neurons: Applications of taxonomic theory to the study of cellular populations. Brain, Behav. Evol. 12, 75-96.

    Google Scholar 

  • Van Pelt, J. and Schierwagen, A., 1994: Electrotonic properties of passive dendritic trees-effect of dendritic topology, in J. van Pelt, M. A. Corner, H. B. M. Uylings, and F. H. Lopes da Silva (eds.), Progress in Brain Research. Vol. 102: The Self-Organisation of the Brain: From Growth Cones to Functional Networks, Elsevier, New York, pp. 127-149.

    Google Scholar 

  • Wässle, H. and Boycott, B. B., 1991: Functional architecture of the mammalian retina. Physiol. Rev. 71(2), 447-480.

    PubMed  Google Scholar 

  • Wässle, H., Boycott, B. B. and Illing, R. B., 1981a: Morphology and mosaic of on-and off-beta cells in the cat retina and some functional considerations. Proc. R. Soc. London B. 212, 177-197.

    Google Scholar 

  • Wässle, H. Peichl, L. and Boycott, B. B., 1981b: Morphology and topography of on-and off-alpha cells in cat retina. Proc. R. Soc. Lond. B. 212, 157-175.

    PubMed  Google Scholar 

  • Wässle, H. Peichl, L. and Boycott, B. B., 1981c: Dendritic territories of cat retinal ganglion cells. Nature 292, 344-345.

    PubMed  Google Scholar 

  • Wässle, H., Voigt, T. and Patel, B., 1987: Morphological and immunocytochemical identification of indolamineaccumulating neurons in the cat retina. J. Neurosci. 7(5),1574-1585.

    PubMed  Google Scholar 

  • Welkowitz, J., Ewen, R. B. and Cohen, J., 1976: Introductory Statistics for the Behavioural Sciences. Academic Press, New York.

  • White, C. A. and Chalupa, L. M., 1991: Subgroup of alpha ganglion cells in the adult cat retina is immunoreactive for somatostatin. J. Comp. Neurol. 304, 1-13.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jelinek, H.F., Cesar, R.M. & Leandro, J.J.G. Exploring Wavelet Transforms for Morphological Differentiation Between Functionally Different Cat Retinal Ganglion Cells. Brain and Mind 4, 67–90 (2003). https://doi.org/10.1023/A:1024112215968

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024112215968

Navigation