Skip to main content
Log in

A Mechanical Model for Analyzing the Runaway Solutions in the Radiation Reaction Problem

  • Published:
Foundations of Physics Aims and scope Submit manuscript

In order to understand the rise of runaway solutions in the radiation reaction problem a mechanical model is used. An alternative demonstration of Daboul’s theorem, through Hurwitz’s criterion, is given. The origin of runaway solutions in electrodynamics is discussed. They arise when the particle has a negative mechanical mass or when approximations are used in the equation of motion. In the 1-dimensional mechanical model an exact and linear equation of motion for the particle is obtained, the corresponding exact solution is again runaway when the mechanical mass is negative. The exact solution is not runaway when the mechanical mass is positive. However, the use of approximations leads to an equation of motion which has runaway solutions. It is exhibited that the use of approximations in the 3-dimensional mechanical model is completely necessary because the general equation of motion for the particle is non-linear. The analysis of this case proceeds in a very similar way to the one carried out in electrodynamics. This means that the number of dimensions also plays an important role in the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd edn. (Addison Wesley, Reading, Massachusetts, 1962). F. Rohrlich, Classical Charged Particles (Addison-Wesley, Reading, Massachusetts, 1965). J. D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999). J. L. Jiménez and R. Montemayor, Nuovo Cimento B 73, 246 (1983). J. L. Jiménez and I. Campos, Am. J. Phys.55, 1017 (1987). J. A. E. Roa-Neri and J. L. Jiménez, Found. Phys. Lett. 7, 403 (1994). R. Medina, J. Phys. A: Math. Gen. 39, 3801 (2006).

  2. Pearle P. (1982). ”Classical electron models”. In: Teplitz D. (eds) Electromagnetism: Paths to Research. Plenum, New York, pp. 211–295

    Google Scholar 

  3. Burke W.L. (1971). J. Math. Phys 12: 401

    Article  ADS  Google Scholar 

  4. Eliezer C.J. (1947). Rev. Mod. Phys 19: 147

    Article  ADS  MathSciNet  Google Scholar 

  5. Daboul J. (1974). Int. J. Theoret. Phys 11: 145

    Article  MathSciNet  Google Scholar 

  6. Oliver M.A. (1999). Found. Phys. Lett 12: 81

    Article  MathSciNet  Google Scholar 

  7. D. Bohm and M. Weinstein, Phys. Rev.74, 1789 (1948). J. D. Kaup, Phys. Rev. 152, 1130 (1966). B. H. Goedecke, Nuovo Cimento 28B, 225 (1975). B. H. Goedecke, Nuovo Cimento 30B, 108 (1975). H. E. Levine, E. J. Moniz and D. H. Sharp, Am. J. Phys. 45, 75 (1977). E. J. Moniz, and D. H. Sharp, Phys. Rev. 15, 2850 (1977). P. Caldirola, G. Casati and A. Prosperetti, Nuovo Cimento 43A, 127 (1978). H. M. França, G. C. Marquez, and A. J. Da Silva, Nuovo Cimento 48A, 65 (1978). J. L. Jiménez and I. Campos, Found. Phys. Lett. 12, 127 (1999). J. A. E. Roa-Neri and J. L. Jiménez, Found. Phys. 32, 1617 (2002).

  8. Roa-Neri J.A.E., Jiménez J.L. (1993). Nuovo Cimento B 108: 853

    Article  ADS  Google Scholar 

  9. Lorentz H.A. (1952). The Theory of Electrons and its Applications to the Phenomena of Light and Radiation Heat 2nd edn. Dover, New York

    Google Scholar 

  10. Uspensky J.V. (1948). Theory of Equations. McGraw-Hill, New York

    Google Scholar 

  11. de la Peña L., Jiménez J.L., Montemayor R. (1982). Nuovo Cimento B 69: 71

    ADS  Google Scholar 

  12. Smirnov A.Y. (1997). J. Phys. A: Math. Gen 30: 1135

    Article  MATH  ADS  Google Scholar 

  13. Goldstein H. (1980). Classical Mechanics 2nd edn. Addison-Wesley, Reading, MA

    Google Scholar 

  14. Pauli W. (1973). Lectures on Physics. MIT, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Jiménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, J.L., Roa-Neri, J.A.E. & Vargas, P. A Mechanical Model for Analyzing the Runaway Solutions in the Radiation Reaction Problem. Found Phys 37, 410–426 (2007). https://doi.org/10.1007/s10701-007-9109-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9109-9

Keywords

Navigation