Skip to main content
Log in

On “Gauge Renormalization” in Classical Electrodynamics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

In this paper we pay attention to the inconsistency in the derivation of the symmetric electromagnetic energy–momentum tensor for a system of charged particles from its canonical form, when the homogeneous Maxwell’s equations are applied to the symmetrizing gauge transformation, while the non-homogeneous Maxwell’s equations are used to obtain the motional equation. Applying the appropriate non-homogeneous Maxwell’s equations to both operations, we obtained an additional symmetric term in the tensor, named as “compensating term”. Analyzing the structure of this “compensating term”, we suggested a method of “gauge renormalization”, which allows transforming the divergent terms of classical electrodynamics (infinite self-force, self-energy and self-momentum) to converging integrals. The motional equation obtained for a non-radiating charged particle does not contain its self-force, and the mass parameter includes the sum of mechanical and electromagnetic masses. The motional equation for a radiating particle also contains the sum of mechanical and electromagnetic masses, and does not yield any “runaway solutions”. It has been shown that the energy flux in a free electromagnetic field is guided by the Poynting vector, whereas the energy flux in a bound EM field is described by the generalized Umov’s vector, defined in the paper. The problem of electromagnetic momentum is also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorentz H.A, The Theory of Electrons, 2nd edn. (Dover, 1952).

  2. Abraham M, (1903). “Die Prinzipien der Dynamik des Elektrons”. Ann. Phys. 10: 105

    Google Scholar 

  3. Dirac P.A.M., (1938). “Classical theory of radiating electrons”. Proc. Roy. Soc. (London) A 167: 148

    Article  ADS  Google Scholar 

  4. Born M, Infeld L, (1934). “Foundations of the new field theory”. Proc. Roy. Soc. A 144, 145

    Google Scholar 

  5. Rohrlich F, (1965). Classical Charged Particles. Addison-Wesley, Reading Mass

    MATH  Google Scholar 

  6. Landau L.D, Lifshitz E.M, (1962). The Classical Theory of Fields, 2nd edn. Pergamon, New York

    MATH  Google Scholar 

  7. Jackson J.D, (1975). Classical Electrodynamics. Wiley, New York

    MATH  Google Scholar 

  8. Panofsky W.K.H, Phillips M, (1962). Classical Electricity and Magnetism, 2nd edn. Addison-Wesley, Reading Mass

    MATH  Google Scholar 

  9. Pauli W, (1958). Principles of quantum mechanics, Encyclopedia of Physics, Vol V/1. Springer, Berlin

    Google Scholar 

  10. Moniz E.J, Sharp D.H, (1977). “Radiation reaction in nonrelativistic quantum electrodynamics”. Phys. Rev. D 15: 2850

    Article  ADS  Google Scholar 

  11. Feynman R.P, Leighton R.B, Sands M, (1964). The Feynman Lectures in Physics, Vol 2. Addison-Wesley, Reading Mass

    Google Scholar 

  12. Yang K.-H., (1976). “Gauge transformations and quantum mechanics II. Physical interpretation of classical gauge transformations”. Ann. Phys. 101, 97

    Google Scholar 

  13. Brown G.J.N, Crothers D.S.F, (1989). “Generalised gauge invariance of electromagnetism”. J. Phys. A: Math. Gen. 22: 2939

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Møller C., (1972). The Theory of Relativity. Clarendon Press, Oxford

    Google Scholar 

  15. Chubykalo A, Espinoza A, Tzonchev R, (2004). “Experimental test of the compatibility of the definitions of the electromagnetic energy density and the Poynting vector”. Eur. Phys. J. D 31(1): 113

    Article  ADS  Google Scholar 

  16. Kholmetskii A.L, (2004). “Remarks on momentum and energy flux of a non-radiating electromagnetic field”. Annales de la Foundation Louis de Broglie 29, 549

    MathSciNet  Google Scholar 

  17. Umov N.A, Izbrannye Sochineniya (Gostechizdat, Moscow, 1950) (in Russian).

  18. Jackson J.D, (2002). “From Lorentz to Coulomb and other explicit gauge transformations”. Am. J. Phys. 70, 917

    Article  ADS  Google Scholar 

  19. Chubykalo A.E, Onoochin V.V, (2002). “On the theoretical possibility of the electromagnetic scalar potential wave spreading with an arbitrary velocity in vacuum”. Hadronic J. 25, 597

    MathSciNet  MATH  Google Scholar 

  20. Dmitriev V.P, (2004). “On vector potential of the Coulomb gauge”. Eur. J. Phys. 25, 23

    Article  MathSciNet  Google Scholar 

  21. Aguirregabiria J.M, Hernández A., Rivas M, (1982). “A Lewis–Tolman-like paradox”. Eur. J. Phys. 3, 30

    Article  Google Scholar 

  22. Shockley W, James R.P, (1967). “Try simplest cases’ discovery of “hidden momentum” forces on magnetic currents”. Phys. Rev. Lett. 18, 876

    Article  ADS  Google Scholar 

  23. Aharonov Y, Pearle P, Vaidman L, (1988). “Comment on Proposed Aharonov–Casher effect: another example of an Aharonov–Bohm effect arising from a classical lag”’. Phys. Rev. A 37: 4052

    Article  ADS  Google Scholar 

  24. Graham M, Lahoz D.G, (1980). “Observation of static electromagnetic angular momentum in vacuo”. Nature 285, 154

    Article  ADS  Google Scholar 

  25. H. Poincaré, Rend. Circ. Mat. Palermo 21, 129 (1906). (Engl. trans. with modern notation in Schwartz H.M, “Poincaré’s Rendincoti paper on relativity” Am. J. Phys. 40, 862 (1972)).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander L. Kholmetskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kholmetskii, A.L. On “Gauge Renormalization” in Classical Electrodynamics. Found Phys 36, 715–744 (2006). https://doi.org/10.1007/s10701-005-9039-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-9039-3

Keywords

Navigation