Skip to main content
Log in

Informed Consent in Implantable BCI Research: Identifying Risks and Exploring Meaning

  • Original Paper
  • Published:
Science and Engineering Ethics Aims and scope Submit manuscript

Abstract

Implantable brain–computer interface (BCI) technology is an expanding area of engineering research now moving into clinical application. Ensuring meaningful informed consent in implantable BCI research is an ethical imperative. The emerging and rapidly evolving nature of implantable BCI research makes identification of risks, a critical component of informed consent, a challenge. In this paper, 6 core risk domains relevant to implantable BCI research are identified—short and long term safety, cognitive and communicative impairment, inappropriate expectations, involuntariness, affective impairment, and privacy and security. Work in deep brain stimulation provides a useful starting point for understanding this core set of risks in implantable BCI. Three further risk domains—risks pertaining to identity, agency, and stigma—are identified. These risks are not typically part of formalized consent processes. It is important as informed consent practices are further developed for implantable BCI research that attention be paid not just to disclosing core research risks but exploring the meaning of BCI research with potential participants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The list of core and exploratory risk domains are not exhaustive nor are they necessarily mutually exclusive, but are meant as a useful, first pass framework for mapping risk in BCI research. While this framework may be applicable to other areas of BCI research, such as non-implantable BCI (e.g., EEG, TMS, tCDS), extension beyond implantable BCI is not intended here.

References

  • Aarsland, D., Zaccai, J., & Brayne, C. (2005). A systematic review of prevalence studies of dementia in Parkinson’s disease. Movement Disorders, 20, 1255–1263.

    Article  Google Scholar 

  • Abbott, A. (2012). Mind-controlled robot arms show promise. http://www.nature.com/news/mind-controlled-robot-arms-show-promise-1.10652. Accessed 29 June 2015

  • Abelson, J. L., Curtis, G. C., Sagher, O., Albucher, R. C., Harrigan, M., Taylor, S. F., et al. (2005). Deep brain stimulation for refractory obsessive-compulsive disorder. Biological Psychiatry, 57(5), 510–516.

    Article  Google Scholar 

  • Appelbaum, P., & Grisso, T. (2001). MacCAT-CR: MacArthur competence assessment tool for clinical research. Sarasota, FL: Professional Resource Press.

    Google Scholar 

  • Appelbaum, P. S., Roth, L. H., Lidz, C. W., Benson, P., & Winslade, W. (1987). False hopes and best data: Consent to research and the therapeutic misconception. Hastings Center Report, 17(2), 20–24.

    Article  Google Scholar 

  • Baylis, F. (2013). “I Am Who I Am”: On the perceived threats to personal identity from deep brain stimulation. Neuroethics, 6(3), 513–526.

    Article  Google Scholar 

  • Beauchamp, T. L., & Childress, J. F. (2012). Principles of biomedical ethics (7th ed.). New York: Oxford University Press.

    Google Scholar 

  • Bell, E., Mathieu, G., & Racine, E. (2009). Preparing the ethical future of deep brain stimulation. Surgical Neurology, 72(6), 577–586.

    Article  Google Scholar 

  • Bell, E., Maxwell, B., McAndrews, M. P., Sadikot, A., & Racine, E. (2010). Hope and patients’ expectations in deep brain stimulation: Healthcare providers’ perspectives and approaches. Journal of Clinical Ethics, 21, 112–124.

    Google Scholar 

  • Bell, E., Racine, E., Chiasson, P., Dufourcq-Brana, M., Dunn, L. B., Fins, J. J., et al. (2014). Beyond consent in research. Cambridge Quarterly of Healthcare Ethics, 23(03), 361–368.

    Article  Google Scholar 

  • Bergey, G. K., Morrell, M. J., Mizrahi, E. M., Goldman, A., King-Stephens, D., Nair, D., et al. (2015). Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology, 84(8), 810–817.

    Article  Google Scholar 

  • Carmichael, C., & Carmichael, P. (2014). BNCI systems as a potential assistive technology: Ethical issues and participatory research in the BrainAble project. Disability and Rehabilitation: Assistive Technology, 9(1), 41–47.

    Article  Google Scholar 

  • Cherney, J. L. (1999). Deaf culture and the cochlear implant debate: Cyborg politics and the identity of people with disabilities. Argumentation and Advocacy, 36(1), 22–34.

    Google Scholar 

  • Chio, A., Gauthier, A., Calvo, A., Ghiglione, P., & Mutani, R. (2005). Caregiver burden and patients’ perception of being a burden in ALS. Neurology, 64(10), 1780–1782.

    Article  Google Scholar 

  • Clausen, J. (2008). Moving minds: ethical aspects of neural motor prostheses. Biotechnology Journal, 3(12), 1493–1501.

    Article  Google Scholar 

  • Clausen, J. (2011). Conceptual and ethical issues with brain–hardware interfaces. Current Opinion in Psychiatry, 24(6), 495–501.

    Google Scholar 

  • Consonni, M., Iannaccone, S., Cerami, C., et al. (2013). The cognitive and behavioural profile of amyotrophic lateral sclerosis: Application of the consensus criteria. Behavioural Neurology, 27(2), 143–153.

    Article  Google Scholar 

  • Costello, A., Al Khamees, H., Moriarty, J., Hulse, N., Malik, I., Selway, R., et al. (2011). Non-amnestic mild cognitive impairment is a prominent aspect in Parkinson’s disease patients being considered for deep brain stimulation. Basal Ganglia, 1(4), 213–220.

    Article  Google Scholar 

  • Denning, T., Matsuoka, Y., & Kohno, T. (2009). Neurosecurity: Security and privacy for neural devices. Neurosurgical Focus, 27(1), E7.

    Article  Google Scholar 

  • Drazin, D., Spitler, K., Cekic, M., et al. (2013). Incidental finding of tumor while investigating subarachnoid hemorrhage: Ethical considerations and practical strategies. Science and Engineering Ethics, 19(3), 1107–1120.

    Article  Google Scholar 

  • Farah, M. J. (2012). Neuroethics: The ethical, legal, and societal impact of neuroscience. Annual Review of Psychology, 63, 571–591.

    Article  Google Scholar 

  • Finder, S. G. (2012). Potential subjects’ responses to an ethics questionnaire in a phase I study of deep brain stimulation in early Parkinson’s disease. Journal of Clinical Ethics, 23(3), 207–216.

    Google Scholar 

  • Fisher, C. E., Dunn, L. B., Christopher, P. P., Holtzheimer, P. E., Leykin, Y., Mayberg, H. S., et al. (2012). The ethics of research on deep brain stimulation for depression: Decisional capacity and therapeutic misconception. Annals of the New York Academy of Sciences, 1265, 69–79.

    Article  Google Scholar 

  • Foley, P. (2015). Deep brain stimulation for Parkinson’s disease: Historical and neuroethical aspects. In J. Clausen & N. Levy (Eds.), Handbook of neuroethics (pp. 561–587). Dordrecht: Springer.

    Google Scholar 

  • Gilbert, F. (2012). The burden of normality: From ‘chronically ill’ to ‘symptom free’. New ethical challenges for deep brain stimulation postoperative treatment. Journal of Medical Ethics, 38(7), 408–412.

    Article  Google Scholar 

  • Glannon, W. (2009). Stimulating brains, altering minds. Journal of Medical Ethics, 35(5), 289–292.

    Article  Google Scholar 

  • Glannon, W. (2010). Consent to deep brain stimulation for neurological and psychiatric disorders. Journal of Clinical Ethics, 21, 104–111.

    Google Scholar 

  • Glannon, W. (2014). Ethical issues with brain–computer interfaces. Frontiers in Systems Neuroscience, 8, 136. doi:10.3389/fnsys.2014.00136.

    Google Scholar 

  • Goering, S. (2014). Is it still me? DBS, agency, and the extended, relational me. AJOB Neuroscience, 5(4), 50–51.

    Article  Google Scholar 

  • Goethals, I., Jacobs, F., Van der Linden, C., Caemaert, J., & Audenaert, K. (2008). Brain activation associated with deep brain stimulation causing dissociation in a patient with Tourette’s syndrome. Journal of Trauma & Dissociation, 9(4), 543–549.

    Article  Google Scholar 

  • Halperin, D., Heydt-Benjamin, T. S., Ransford, B., Clark, S. S., Defend, B., Morgan, W., et al. (2008). Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-power defenses. In IEEE (Ed.), IEEE symposium on security and privacy (pp. 129–142). Los Alamitos: IEEE Computer Society Conference Publishing Services.

    Google Scholar 

  • Haselager, P. (2013). Did I do that? Brain–computer interfacing and the sense of agency. Minds and Machines, 23(3), 405–418.

    Article  Google Scholar 

  • Haselager, P., Vlek, R., Hill, J., & Nijboer, F. (2009). A note on ethical aspects of BCI. Neural Networks, 22(9), 1352–1357.

    Article  Google Scholar 

  • Herron, J., & Chizeck, H. J. (2014). Prototype closed-loop deep brain stimulation systems inspired by Norbert Wiener. Proceedings of the 2014 IEEE Conference on Norbert Wiener in the 21st Century (pp. 1–6).

  • Hochberg, L. R., & Anderson, K. D. (2012). BCI users and their needs. In J. Wolpaw & W. W. Elizabeth (Eds.), Brain–computer interfaces: Principles and practice (pp. 317–323). New York: Oxford University Press.

    Google Scholar 

  • Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D., Vogel, J., et al. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485(7398), 372–375.

    Article  Google Scholar 

  • Hochberg, L., & Cochrane, T. (2013). Implanted neural interfaces: Ethics in treatment and research. In A. Chatterjee & M. Farah (Eds.), Neuroethics in practice (pp. 235–250). New York, NY: Oxford University Press. doi:10.1093/acprof:oso/9780195389784.003.0017.

    Chapter  Google Scholar 

  • https://www.youtube.com/watch?v=ogBX18maUiM. Accessed 17 July 2015

  • https://www.youtube.com/watch?v=6WO71e0XLqs. Accessed 17 July 2015

  • http://www.braingate2.org/

  • https://clinicaltrials.gov/ct2/show/NCT00340834

  • Johnson-Green, D. (2010). Informed consent issues in traumatic brain injury research: Current status of capacity assessment and recommendations for safeguards. J Head Trauma Rehabil, 25(2), 145–150. doi:10.1097/HTR.0b013e3181d8287d.

    Article  Google Scholar 

  • Klein, E. (2015). Models of the patient–machine–clinician relationship in closed-loop machine neuromodulation. In S. van Rysewyk & M. Pontier (Eds.), Machine medical ethics (pp. 273–290). Dordrecht: Springer International Publishing.

    Google Scholar 

  • Kolata, G. (2009). Of fact, fiction, and Cheney’s defibrillator. http://www.nytimes.com/2013/10/29/science/of-fact-fiction-and-defibrillators.html?_r=0. Accessed 22 July 2015

  • Kübler, A., & Birbaumer, N. (2008). Brain–computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients? Clinical Neurophysiology, 119(11), 2658–2666.

    Article  Google Scholar 

  • Kubler, A., & Muller, K.-R. (2007). An introduction to brain–computer interfacing. In G. Dornhege, J. Millan, T. Hinterberger, D. McFarland, & K.-R. Muller (Eds.), Towards brain–computer interfacing (pp. 1–25). Cambridge, MA: MIT Press.

    Google Scholar 

  • Lang, A. E., Houeto, J., Krack, P., Kubu, C., Lyons, K. E., Moro, E., et al. (2006). Deep brain stimulation: Preoperative issues. Movement Disorders, 21(S14), S171–S196.

    Article  Google Scholar 

  • Larson, P. S. (2014). Deep brain stimulation for movement disorders. Neurotherapeutics, 11(3), 465–474.

    Article  Google Scholar 

  • Leentjens, A. F. G., Visser-Vandewalle, V., Temel, Y., & Verhey, F. R. J. (2004). Manipuleerbare wilsbekwaamheid: een ethisch probleem bij elektrostimulatie van de nucleaus subthalamicus voor ernstige ziekte van Parkinson. Nederlands Tijdschrift voor Geneeskunde, 148, 1394–1397.

    Google Scholar 

  • Lhommeé, E., Klinger, H., Thobois, S., Schmitt, E., Ardouin, C., Bichon, A., et al. (2012). Subthalamic stimulation in Parkinson’s disease: Restoring the balance of motivated behaviours. Brain, 135, 1463–1477.

    Article  Google Scholar 

  • Liberati, G., da Rocha, J. L., Van Dalboni, L., der Heiden, A., Raffone, N. B., Olivetti, B. M., et al. (2011). Toward a brain–computer interface for Alzheimer’s disease patients by combining classical conditioning and brain state classification. Journal of Alzheimer’s Disease, 31, S211–S220.

    Google Scholar 

  • Mak, J. N., & Wolpaw, J. R. (2009). Clinical applications of brain–computer interfaces: Current state and future prospects. Biomedical Engineering IEEE Reviews, 2, 187–199.

    Article  Google Scholar 

  • Mandat, T. S., Hurwitz, T., & Honey, C. R. (2006). Hypomania as an adverse effect of subthalamic nucleus stimulation: Report of two cases. Acta Neurochirurgica, 148(8), 895–898.

    Article  Google Scholar 

  • McCullagh, P., Lightbody, G., Zygierewicz, J., & Kernohan, W. G. (2014). Ethical challenges associated with the development and deployment of brain computer interface technology. Neuroethics, 7(2), 109–122.

    Article  Google Scholar 

  • McGie, S. C., Nagai, M. K., & Artinian-Shaheen, T. (2013). Clinical ethical concerns in the implantation of brain-machine interfaces: Part II: Specific clinical and technical issues affecting ethical soundness. Pulse IEEE, 4(2), 32–37. [confirm the issue].

    Article  Google Scholar 

  • Morishita, T., Okun, M. S., Jones, J. D., Foote, K. D., & Bowers, D. (2014). Cognitive declines after deep brain stimulation are likely to be attributable to more than caudate penetration and lead location. Brain, 137(5), e274.

    Article  Google Scholar 

  • Patuzzo, S., & Manganotti, P. (2014). Deep brain stimulation in persistent vegetative states: Ethical issues governing decision making. Behavioural Neurology, 2014, 641213. Epub 2014 Mar 16.

    Article  Google Scholar 

  • Post, M. W. M., Bloemen, J., & De Witte, L. P. (2005). Burden of support for partners of persons with spinal cord injuries. Spinal Cord, 43(5), 311–319.

    Article  Google Scholar 

  • Presidential Commission for the Study of Bioethical Issues. (2015). Gray matters: Topics at the intersection of neuroroscience, ethics, and society, Vol. 2. Washington, DC.

  • Rao, R. P. N. (2013). Brain–computer interfacing: An introduction. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Richmond, F. J. R., & Loeb, G. E. (2012). Dissemination: Getting BCIs to the people who need them. In J. Wolpaw & E. W. Wolpaw (Eds.), Brain–computer interfaces: Principles and practice (pp. 337–350). New York: Oxford University Press.

    Google Scholar 

  • Ringholz, G. M., Appel, S. H., Bradshaw, M., et al. (2005). Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology, 65, 586–589.

    Article  Google Scholar 

  • Schermer, M. (2011). Ethical issues in deep brain stimulation. Frontiers Integrative Neruoscience, 5, 17.

    Google Scholar 

  • Schneider, M.-J., Fins, J. J., & Wolpaw, J. R. (2012). Ethical issues in BCI research. In J. Wolpaw & E. Wolpaw (Eds.), Braincomputer interfaces: Principles and practice (pp. 373–383).

  • Schrag, A., Hovris, A., Morley, D., Quinn, N., & Jahanshahi, M. (2006). Caregiver-burden in Parkinson’s disease is closely associated with psychiatric symptoms, falls, and disability. Parkinsonism & Related Disorders, 12(1), 35–41.

    Article  Google Scholar 

  • Schüpbach, M., Gargiulo, M., Welter, M. L., Mallet, L., Behar, C., Houeto, J. L., et al. (2006). Neurosurgery in Parkinson disease A distressed mind in a repaired body? Neurology, 66(12), 1811–1816.

    Article  Google Scholar 

  • Seidenberg, M., Pulsipher, D. T., & Hermann, B. (2007). Cognitive progression in epilepsy. Neuropsychology Review, 17(4), 445–454.

    Article  Google Scholar 

  • Sellars, A. (2010). Brain–computer interface for long-term independent home use. Amyo Lat Scl, 11, 449–455.

    Article  Google Scholar 

  • Siderowf, A., Jaggi, J. L., Xie, S. X., et al. (2006). Long-term effects of bilateral subthalamic nucleus stimulation on health-related quality of life in advanced Parkinson’s disease. Movement Disorders, 21(6), 746–753.

    Article  Google Scholar 

  • Skuban, T., Hardenacke, K., Woopen, C., & Kuhn, J. (2011). Informed consent in deep brain stimulation–ethical considerations in a stress field of pride and prejudice. Frontiers in Integrative Neuroscience, 5, 7. doi:10.3389/fnint.2011.00007.

    Article  Google Scholar 

  • Synofzik, M. (2015). Deep brain stimulation research ethics: The ethical need for standardized reporting, adequate trial designs, and study registrations. In J. Clausen & N. Levy (Eds.), Handbook of neuroethics (pp. 621–633). Dordrecht: Springer.

    Google Scholar 

  • Synofzik, M., & Schlaepfer, T. E. (2008). Stimulating personality: Ethical criteria for deep brain stimulation in psychiatric patients and for enhancement purposes. Biotechnology Journal, 3(12), 1511–1520.

    Article  Google Scholar 

  • Synofzik, M., Schlaepfer, T. E., & Fins, J. J. (2012). How happy is too happy? Euphoria, neuroethics, and deep brain stimulation of the nucleus accumbens. AJOB Neuroscience, 3(1), 30–36.

    Article  Google Scholar 

  • U.S. National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. (1979). The Belmont report: Ethical guidelines for the protection of human subjects of research. Washington DC: U.S. Government Printing Office.

    Google Scholar 

  • Vlek, R. J., Steines, D., Szibbo, D., Kübler, A., Schneider, M.-J., Haselager, P., et al.(2012). Ethical issues in brain–computer interface research, development, and dissemination. Journal of Neurologic Physical Therapy, 36(2), 94–99.

    Article  Google Scholar 

  • Wardrope, A. (2014). Authenticity and autonomy in deep-brain stimulation. Journal of Medical Ethics, 40(8), 563–566.

    Article  Google Scholar 

  • Widge, A. S., Arulpragasam, A. R., Deckersbach, T., & Dougherty, D. D. (2015). Deep brain stimulation for psychiatric disorders. Emerging trends in the social and behavioral sciences: An interdisciplinary, searchable, and linkable resource (pp. 1–17).

  • Witt, K., Kuhn, J., Timmermann, L., Zurowski, M., & Woopen, C. (2013). Deep brain stimulation and the search for identity. Neuroethics, 6(3), 499–511.

    Article  Google Scholar 

  • Wolaw, J., & Wolpaw, E. W. (2012). Brain–computer interfaces: Principles and practice. New York: Oxford University Press.

    Google Scholar 

Download references

Acknowledgments

The author is grateful to Sara Goering and Laura Specker Sullivan for helpful comments. This work was supported by Award Number EEC-1028725 from the National Science Foundation. The content is solely the responsibility of the author and does not necessarily represent the official views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eran Klein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, E. Informed Consent in Implantable BCI Research: Identifying Risks and Exploring Meaning. Sci Eng Ethics 22, 1299–1317 (2016). https://doi.org/10.1007/s11948-015-9712-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11948-015-9712-7

Keywords

Navigation