Skip to main content
Log in

Maximum likelihood estimation on generalized sample spaces: An alternative resolution of Simpson's paradox

  • Part III. Invited Papers Dedicated To The Memory Of Charles H. Randall (1928–1987)
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We propose an alternative resolution of Simpson's paradox in multiple classification experiments, using a different maximum likelihood estimator. In the center of our analysis is a formal representation of free choice and randomization that is based on the notion of incompatible measurements.

We first introduce a representation of incompatible measurements as a collection of sets of outcomes. This leads to a natural generalization of Kolmogoroff's axioms of probability. We then discuss the existence and uniqueness of the maximum likelihood estimator for a probability weight on such a generalized sample space, given absolute frequency data.

As a first example, we discuss an estimation problem with censured data that classically admits only biased ad hoc estimators.

Next, we derive an explicit solution of the maximum likelihood estimation problem for a large class of experiments that arise from various kids of compositions of sample spaces. We identify the (categorical) direct sum of sample spaces as a representation of “free choice,” and the (categorical) direct product as a representation of “randomization.”

Finally, we apply the foregoing discussion to the case of multiple classification experiments in order to show that there is no Simpson's paradox if the difference between free choice and randomization is recognized in the structure of the experiment.

A comparison between our new estimator and the “usual” calculation can be summarized as follows: Pooling the data over one classification factor in the “usual” way in fact destroys or ignores the information contained in it, whereas our proposed maximum likelihood estimator is a proper marginal over this factor that “averages out” the information contained in it. The estimators agree with each other in the case of proportional sample sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Bickel, E. A. Hammel, and J. W. O'Connell, “Sex bias in graduate admissions: Data from Berkeley,”Science 187, 398–404 (1975).

    Google Scholar 

  2. C. R. Blyth, “On Simpson's paradox and the sure-thing principle,”J. Am. Stat. Assoc. 67, 364–366 (1972).

    Google Scholar 

  3. C. R. Blyth, “Simpson's paradox and mutually favorable events,”J. Am. Stat. Assoc. 68, 746 (1973).

    Google Scholar 

  4. N. Cartwright,How the Laws of Physics Lie (Clarendon, New York, 1983).

    Google Scholar 

  5. M. R. Cohen and E. Nagel,An Introduction to Logic and Scientific Method (Harcourt, Brace, and Co, New York, 1934).

    Google Scholar 

  6. J. C. Dacey, Jr., “Orthomodular spaces,” Dissertation, University of Massachusetts, Amherst, 1968.

    Google Scholar 

  7. D. J. Foulis and C. H. Randall, “Operational statistics. I. Basic concepts,”J. Math. Phys. 13, 1667–1675 (1972).

    Google Scholar 

  8. D. J. Foulis and C. H. Randall, “Empirical logic and quantum mechanics,”Synthese 29, 81–111 (1974).

    Google Scholar 

  9. D. J. Foulis and C. H. Randall, “Empirical logic and tensor products,” inInterpretations and Foundations of Quantum Theory, H. Neumann, ed. (Bibliographisches Institut, Mannheim, 1981), pp. 9–20.

    Google Scholar 

  10. D. Freedman, R. Pisani, and R. Purves,Statistics (Norton, New York, 1978).

    Google Scholar 

  11. M. Gaudard, “The prior in Bayesian inference: a nonclassical approach,” Dissertation, University of Massachusetts, Amherst, 1977.

    Google Scholar 

  12. M. Gaudard, “Convergence of posterior probabilities in the Bayesian inference strategy,”Found. Phys. 15, 49–62 (1985).

    Google Scholar 

  13. E. R. Gerelle, R. J. Greechie, and F. R. Miller, “Weights on spaces,” inPhysical Reality and Mathematical Description, E. P. Enz and J. Mehra, eds. (Reidel, Dordrecht, 1974), pp. 169–192.

    Google Scholar 

  14. R. J. Greechie and S. P. Gudder, “Quantum logics,” inContemporary Research in the Foundations and Philosophy of Quantum Theory, C. A. Hooker, ed. (Reidel, Dordrecht, 1973), pp. 143–173.

    Google Scholar 

  15. S. P. Gudder, “Logical cover spaces,”Ann. Inst. Henri Poincaré 45, 327–337 (1986).

    Google Scholar 

  16. S. P. Gudder, M. P. Kläy, and G. T. Rüttimann, “States on hypergraphs,”Dem. Math. 19, 503–526 (1986).

    Google Scholar 

  17. S. P. Gudder, G. T. Rüttimann, and R. J. Greechie, “Measurement, Hilbert space and quantum logic,”J. Math. Phys. 23, 2381–2386 (1982).

    Google Scholar 

  18. M. P. Kläy, “Stochastic models on empirical systems, empirical logics and quantum logics, and states on hypergraphs,” Dissertation, Universität Bern (1985).

  19. M. P. Kläy, “Quantum logic properties of hypergraphs,”Found. Phys. 17, 1019–1036 (1987).

    Google Scholar 

  20. M. P. Kläy, C. H. Randall, and D. J. Foulis, “Tensor products and probability weights,”Int. J. Theor. Phys. 26, 199–219 (1987).

    Google Scholar 

  21. T. R. Knapp, “Instances of Simpson's paradox,”Coll. Math. J. 16, 209–211 (1985).

    Google Scholar 

  22. A. Kolmogoroff,Grundbegriffe der Wahrscheinlichkeitsrechnung (Springer, Berlin, 1933).

    Google Scholar 

  23. J. von Neumann,Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932).

    Google Scholar 

  24. C. H. Randall and D. J. Foulis, “An approach to empirical logic,”Am. Math. Mon. 77, 363–373 (1970).

    Google Scholar 

  25. C. H. Randall and D. J. Foulis, “Operational statistics. II. Manuals of operations and their logics,”J. Math. Phys. 14, 1472–1480 (1973).

    Google Scholar 

  26. C. H. Randall and D. J. Foulis, “A mathematical setting for inductive reasoning,” inFoundations of Probability Theory, Statistical Inference, and Statistical Theories of Science, Vol. III, W. L. Harper and C. A. Hooker, eds. (Reidel, Dordrecht, 1976), pp. 169–205.

    Google Scholar 

  27. C. H. Randall and D. J. Foulis, “Operational statistics and tensor products,” inInterpretations and Foundations of Quantum Theory, H. Neumann, ed. (Bibliographisches Institut, Mannheim, 1981), pp. 21–28.

    Google Scholar 

  28. C. H. Randall and D. J. Foulis, “A mathematical language for quantum physics,” inTransactions, 25e Cours de perfectionnement de l'Association Vaudoise des Chercheurs en Physique: Les fondements de la Mécanique Quantique, C. Gruber, C. Piron, T. Minhtôm, and R. Weill, eds. (Montana, Switzerland, 1983), pp. 193–226.

    Google Scholar 

  29. G. T. Rüttimann, “Detectable properties and spectral quantum logics,” inInterpretations and Foundations of Quantum Theory, H. Neumann, ed. (Bibliographisches Institut, Mannheim, 1981), pp. 35–47.

    Google Scholar 

  30. E. H. Simpson, “The interpretation of interaction in contingency tables,”J. R. Stat. Soc., Ser. B 13, 238–241 (1951).

    Google Scholar 

  31. C. H. Wagner, “Simpson's paradox in real life,”Am. Stat. 36, 46–48 (1982).

    Google Scholar 

  32. G. U. Yule, “Notes on the theory of associations of attributes in statistics,”Biometrika 2, 121–134 (1903).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by the Swiss National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kläy, M.P., Foulis, D.J. Maximum likelihood estimation on generalized sample spaces: An alternative resolution of Simpson's paradox. Found Phys 20, 777–799 (1990). https://doi.org/10.1007/BF01889691

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01889691

Keywords

Navigation