Skip to main content
Log in

Charge Conservation, Klein’s Paradox and the Concept of Paulions in the Dirac Electron Theory

New Results for the Dirac Equation in External Fields

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

An algebraic block-diagonalization of the Dirac Hamiltonian in a time-independent external field reveals a charge-index conservation law which forbids the physical phenomena of the Klein paradox type and guarantees a single-particle nature of the Dirac equation in strong external fields. Simultaneously, the method defines simpler quantum-mechanical objects—paulions and antipaulions, whose 2-component wave functions determine the Dirac electron states through exact operator relations. Based on algebraic symmetry, the presented theory leads to a new understanding of the Dirac equation physics, including new insight into the Dirac measurements and a consistent scheme of relativistic quantum mechanics of electron in the paulion representation. Along with analysis of the mathematical anatomy of the Klein paradox falsity, a complete set of paradox-free eigenfunctions for the Klein problem is obtained and investigated via stationary solutions of the Pauli-like equations with respective paulion Hamiltonians. It is shown that the physically correct Dirac states in the Klein zone are characterized by the total particle reflection from the potential step and satisfy the fundamental charge-index conservation law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610–624 (1928)

    Article  ADS  Google Scholar 

  2. Klein, O.: Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Z. Phys. 53, 157–165 (1929)

    Article  ADS  Google Scholar 

  3. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. McGraw-Hill, New York (1964)

    Google Scholar 

  4. Thaller, B.: The Dirac Equation. Springer, Berlin (1992)

    Google Scholar 

  5. Greiner, W.: Relativistic Quantum Mechanics: Wave Equations, 3rd edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  6. Schwabl, F.: Advanced Quantum Mechanics, 3rd edn. Springer, Berlin (2005)

    Google Scholar 

  7. CERN NA63 Experimental Programme: Electromagnetic Processes in Strong Crystalline Fields. http://greybook.cern.ch/programmes/experiments/NA63.html. Cited 29 Oct 2009 (2007)

  8. Uggerhøj, U.I.: The interaction of relativistic particles with strong crystalline fields. Rev. Mod. Phys. 77, 1131–1171 (2005)

    Article  ADS  Google Scholar 

  9. Katsnelson, M.I., Novoselov, K.S., Geim, A.K.: Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006)

    Article  Google Scholar 

  10. Sonin, E.B.: Effect of Klein tunneling on conductance and shot noise in ballistic graphene. arXiv:0902.3622 [cond-mat.mes-hall], 1–12 (2009)

  11. Calogeracos, A., Dombey, N.: History and physics of the Klein paradox. Contemp. Phys. 40, 313–321 (1999)

    Article  ADS  Google Scholar 

  12. Christillin, P., Emilio, E.: Role of the slope of realistic potential barriers in preventing relativistic tunneling in the Klein zone. Phys. Rev. A 76, 042104 (2007)

    Article  ADS  Google Scholar 

  13. Hestenes, D.: Mysteries and insights of Dirac theory. Ann. Fond. Louis Broglie 28, 390–408 (2003)

    MathSciNet  Google Scholar 

  14. Boudet, R.: Relativistic Transitions in the Hydrogenic Atoms: Elementary Theory. Springer, Berlin (2009)

    Google Scholar 

  15. Holland, P.R.: The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  16. Cordes, H.O.: Precisely Predictable Dirac Observables. Springer, Berlin (2007)

    MATH  Google Scholar 

  17. Foldy, L.L., Wouthuysen, S.A.: On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev. 78, 29–36 (1950)

    Article  MATH  ADS  Google Scholar 

  18. Case, K.M.: Some generalizations of the Foldy-Wouthuysen transformation. Phys. Rev. 95, 1323–1328 (1954)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Eriksen, E.: Foldy-Wouthuysen transformation. Exact solution with generalization to the two-particle problem. Phys. Rev. 111, 1011–1016 (1958)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Blount, E.I.: Extension of the Foldy-Wouthuysen transformation. Phys. Rev. 128, 2454–2458 (1962)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Silenko, A.J.: Foldy-Wouthuysen transformation for relativistic particles in external fields. J. Math. Phys. 44, 2952–2966 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Silenko, A.J.: Foldy-Wouthuysen transformation and semiclassical limit for relativistic particles in strong external fields. Phys. Rev. A 77, 012116 (2008)

    Article  ADS  Google Scholar 

  23. Gosselin, P., Mohrbach, H.: Diagonal representation for a generic matrix valued quantum Hamiltonian. Eur. Phys. J. C 64, 495–527 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  24. Kononets, Yu.V.: Relativistic analogue of the Pauli equation and Dirac electron states in strong magnetic fields. Europhys. Lett. 71, 517–523 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  25. Schrödinger, E.: Über die kräftefreie Bewegung in der relativistischen Quantenmechanik. Sitzber. Preuss. Akad. Wiss. Berlin, Phys.-Math. Kl. 24, 418–428 (1930)

    Google Scholar 

  26. Sakurai, J.J.: Advanced Quantum Mechanics. Addison-Wesley, New York (1967)

    Google Scholar 

  27. Barut, A.O., Bracken, A.J.: Zitterbewegung and the internal geometry of the electron. Phys. Rev. D 23, 2454–2463 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  28. Rivas, M.: Kinematical Theory of Spinning Particles: Classical and Quantum Mechanical Formalism of Elementary Particles. Kluwer, New York (2002)

    Google Scholar 

  29. Junker, G.: Supersymmetric Methods in Quantum and Statistical Physics. Springer, Berlin (1996)

    MATH  Google Scholar 

  30. Darwin, C.G.: The wave equation of the electron. Proc. R. Soc. Lond. A 118, 654–680 (1928)

    Article  ADS  Google Scholar 

  31. Bargmann, V., Michel, L., Telegdi, V.L.: Precession of the polarization of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett. 2, 435–436 (1959)

    Article  ADS  Google Scholar 

  32. Sauter, F.: Zum “Kleinschen Paradoxon”. Z. Phys. 73, 547–552 (1932)

    Article  ADS  Google Scholar 

  33. Capri, A.Z.: Nonrelativistic Quantum Mechanics, 3rd edn. World Scientific, Singapore (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. V. Kononets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kononets, Y.V. Charge Conservation, Klein’s Paradox and the Concept of Paulions in the Dirac Electron Theory. Found Phys 40, 545–572 (2010). https://doi.org/10.1007/s10701-010-9414-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9414-6

Keywords

Navigation