Skip to main content
Log in

A Model for Spacetime: The Role of Interpretation in Some Grothendieck Topoi

  • Published:
Foundations of Physics Aims and scope Submit manuscript

We analyse the proposition that the spacetime structure is modified at short distances or at high energies due to weakening of classical logic. The logic assigned to the regions of spacetime is intuitionistic logic of some topoi. Several cases of special topoi are considered. The quantum mechanical effects can be generated by such semi-classical spacetimes. The issues of: background independence and general relativity covariance, field theoretic renormalization of divergent expressions, the existence and definition of path integral measures, are briefly discussed in the proposal. The connection with some problems in foundations of mathematics and differential topology are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asselmeyer T. (1997). “Generation of source terms in general relativity by differential structures”. Class. Quant. Grav. 14, 749–758

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Asselmeyer-Maluga T., Brans C.H. (2002). “Cosmological anomalies and exotic smoothness structures”. Gen. Rel. Grav. 34(10): 1767–1771

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Asselmeyer-Maluga and H. Rosé, “Differential structures-the geometrization of quantum mechanics,” e-print gr-qc/0511089.

  4. Barr M. (1974). “Toposes without points”. J. Pure Appl. Alg. 5, 265

    Article  MathSciNet  MATH  Google Scholar 

  5. Bell J.L. (1985). Boolean-valued Models and Independence Proofs in Set Theory, 2nd edn. Oxford University, Oxford

    MATH  Google Scholar 

  6. Bell J.L. (1985). “Orthospaces and quantum logic”. Found. Phys. 15(12): 1179–1202

    Article  MathSciNet  ADS  Google Scholar 

  7. Bell J.L. (1986). “From absolute to local mathematics”. Synthese 69, 409–426

    Article  MathSciNet  Google Scholar 

  8. Benioff P., “Models of ZF set theory as carriers for the mathematics of physics I, II,” J. Math. Phys. 19, 618, 629 (1976).

    Google Scholar 

  9. P. Benioff, “Language is physical,” Quantum Inf. Proc. 1, 4495, e-print quant-ph/0210211 (2002).

  10. Benioff P. (2002). “Towards a coherent theory of physics and mathematics”. Found. Phys. 32, 989–1029

    Article  MathSciNet  Google Scholar 

  11. Brans C.H., Randall D. (1993). “Exotic differentiable structures and general relativity”. Gen. Rel. Grav. 25, 205

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Carlip S. (2001). “Quantum gravity: a progress report”. Rept. Prog. Phys. 64, 885

    Article  MathSciNet  ADS  Google Scholar 

  13. Davis M. (1976). “A relativity principle in quantum mechanics”. Int. J. Theor. Phys. 16(11): 867–874

    Article  Google Scholar 

  14. de Witt-Morette C. (1974). “Feynman path integrals. I. Linear and affine transformations, II. The Feynman Green’s functions”. Comm. Math. Phys. 37, 63

    Article  MathSciNet  ADS  Google Scholar 

  15. Fourman M.P., Hyland J.M.E. (1979), Sheaf Models for Analysis. (Lecture Notes in Mathematics 753), Springer, Berlin, pp. 302–401

    Google Scholar 

  16. A.K. Guts, “Axiomatic relativity theory,” Uspekhi Mat. Nauk 37(2), 39–79 (1982); Russian Math. Survey 37(2), 41–89 (1982).

  17. A. K. Guts and E. B. Grinkevich, “Toposes in general theory of relativity,” e-print gr-qc/9610073 (1996).

  18. A. Heyting, Intuitionism, An Introduction, 3rd edn. (North Holland, New York, 1971).

  19. Isham C.J. (2000). “Some possible role for topos theory in quantum theory and quantum gravity”. Found. Phys. 30(10): 1707–1735

    Article  MathSciNet  Google Scholar 

  20. Isham C.J., Butterfield J. (1998). “A topos perspective on the Kochen-Specker theorem: I. Quantum states as generalized valuations”. Int. J. Theor. Phys. 37, 2669–2733

    Article  MathSciNet  MATH  Google Scholar 

  21. Isham C.J., Butterfield J. (1999). “A topos perspective on the Kochen-Specker theorem: II. Conceptual aspects and classical analogues”. Int. J. Theor. Phys. 38, 827–859

    Article  MathSciNet  MATH  Google Scholar 

  22. Jech T. (2003). Set Theory. Springer, Berlin, Heildelberg, New York

    MATH  Google Scholar 

  23. Johnstone P.T. (2002). Sketches of an Elephant. A Topos Theory Compendium. Clarendon, Oxford

    Google Scholar 

  24. Kaku M. (1993). Quantum Field Theory. A Modern Introduction. Oxford University Press, New York, Oxford

    Google Scholar 

  25. Król J. (2001). “Formal languages and model theoretic perspectives in physics”. Acta Phys. Pol. B 32(11): 3855

    ADS  Google Scholar 

  26. Król J. (2004). “Background independence in quantum gravity and forcing constructions”. Found. Phys. 34(3): 361–403

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Król J. (2004). “Exotic smoothness and noncommutative spaces. The model-theoretical approach”. Found. Phys. 34(5): 843–869

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. J. Król, “Model theory and the AdS/CFT correspondence,” e-print hep-th/0506003 (2005).

  29. Lambek J., Scott P.J. (1994). Introduction to Higher Order Categorical Logic. Cambridge University, Cambridge

    Google Scholar 

  30. Lawvere F.W. (1975). “Continuously Variable Sets; Algebraic Geometry=Geometric Logic”. Logic Coll. 73, 135

    Article  MathSciNet  Google Scholar 

  31. Mac Lane S., Moerdijk I. (1992). Sheaves in Geometry and Logic. A First Introduction to Topos Theory. Springer, New York

    MATH  Google Scholar 

  32. Moerdijk I., Reyes G.E. (1991). Models for Smooth Infinitesimal Analysis. Springer, New York

    MATH  Google Scholar 

  33. H. Pfeiffer, “Quantum general relativity and the classification of smooth manifolds,” e-print gr-qc/0404088 (2004).

  34. Scedrov A. (1986). “Diagonalization of continuous matrices as a representation of intuitionistic reals”. Ann. P. Appl. Logic 30, 201

    Article  MathSciNet  MATH  Google Scholar 

  35. D. Scott, “Boolean models and nonstandard analysis,” in Applications of Model Theory to Algebra, Analysis, and Probability, W. A. J. Luxemburg, ed. (Holt, Reinehart, Winston, New York, 1969).

  36. Sikorski R., Rasiowa H. (1963). The Mathematics of Metamathematics. PWN, Warszawa

    MATH  Google Scholar 

  37. Sładkowski J. (2001). “Gravity on exotic R 4’s with few symmetries”. Int. J. Mod. Phys. D10, 311

    ADS  Google Scholar 

  38. Takeuti G. “Two applications of logic to mathematics”. Math. Soc. Jpn 13, Kano Memorial Lec. 3 (1978).

  39. G. Takeuti, Boolean Valued Analysis, Fourman, Malvey, Scott, eds. (Lect. Notes Math. 753, Applications of Sheaves, Springer, Heildelberg, 1979), p. 714.

  40. G. Takeuti, “Quantum logic and quantization,” in Foundations of Quantum Mechanics in the Light of New Technologies (Tokyo, 1983), (Phys. Soc. Japan, Tokyo, 1984) pp. 256–260.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Król.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Król, J. A Model for Spacetime: The Role of Interpretation in Some Grothendieck Topoi. Found Phys 36, 1070–1098 (2006). https://doi.org/10.1007/s10701-006-9052-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9052-1

Keywords

Navigation