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Abstract The paper undertakes three interdisciplinary tasks. The first one consists

in constructing a formal model of the basic arithmetic competence, that is, the

competence sufficient for solving simple arithmetic story-tasks which do not require

any mathematical mastery knowledge about laws, definitions and theorems. The

second task is to present a generalized arithmetic theory, called the arithmetic of
indexed numbers (INA). All models of the development of counting abilities pre-

suppose the common assumption that our simple, folk arithmetic encoded linguis-

tically in the mind is based on the linear number representation. This classical

conception is rejected and a competitive hypothesis is formulated according to

which the basic mature representational system of cognitive arithmetic is a structure

composed of many numerical axes which possess a common constituent, namely,

the numeral zero. Arithmetic of indexed numbers is just a formal tool for modelling

the basic mature arithmetic competence. The third task is to develop a standpoint

called temporal pluralism, which is motivated by neo-Kantian philosophy of

arithmetic.

Keywords Cognitive arithmetic � Number line � Indexed natural numbers �
Number-axes

1 Introduction

The main purpose of the article is the presentation of a formal model of the basic,

mature system of cognitive arithmetic (Ashcraft 1992, 75–106; Butterworth 2005,

3–18). Cognitive arithmetic is understood as the set of systems encoded in the

mind which enable us to execute numerical calculations. The empirical research
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concerned with the representations of number seems to justify the hypothesis

according to which the mathematical cognitive development of the mind passes over

various phases (Wynn 1990, 155–193; Wynn 1992, 220–251). Its final phase results

in the formation of the basic, mature system of the arithmetic competence due to

which the mind is able to add, multiply and solve simple story-tasks in such a way

that knowledge of mathematical laws, rules and theorems is not completely required

for supplying solutions. In this phase children’s minds come to be equipped with the

representational system of the exact number.1 After acquiring this basic mature

arithmetical competence, children begin their proper mathematical education aimed

at developing their expert mathematical knowledge, composed of theorems,

strategies and definitions, being required for solving various mathematical tasks

of different levels of difficulty.

Most of cognitive psychologists seem to assume that this basic mature representational

system of cognitive arithmetic is the mental number line (Dehaene 2001; Giaquinto 2001b;

Carey 2001), that is, a representational structure processed by the mind during the solution of

various arithmetical tasks. It functions as the representational system of exact natural numbers

and as such must be distinguished from the approximate number line.2 The representational

structure for exact numbers is understood in at least two main ways. In light of the first, weak

Whorfian view, the origin of the natural number mental line is independent of language

(Gelman and Butterworth 2005). According to the second approach, accepted by Carey

(2001) and Le Corre and Carey (2007), all concepts of numbers greater than four are acquired

by the mind in the processes of language acquisition.3 At any rate, this basic representational

structure consists of concepts of numbers (the weak Whorfian view) or of number words with

correspondingconcepts (thestrongWhorfianview):one, two, three, four,etc., and it isordered

by the successor function (compare: Decock 2008). Peano’s arithmetic may be treated as a

theory of this representational structure.

1 The representational system of the exact number is different from the representational system of the

approximate number. Many researchers treat the representational system of the approximate number as

rooted in cognitive evolution and hence as innate. The main difference between both representational

systems is recognized in such a way that representations of approximate numbers belong to the system of

core knowledge (Spelke and Kinzler 2007) whereas representations of exact numbers are encoded in

minds by virtue of learning practice (De Cruz 2008). On various conceptions of acquiring the concept of

natural number, see Rips et al. (2008).
2 The approximate number line possesses properties which distinguish it from the exact number line.

These differences concern, especially, spatial properties and scaling properties. For instance, on the exact

number line, the given absolute distance between numbers is the same on each segment of the line. In the

case of the approximate number line, by contrast, an absolute distances between numbers are not the same

on each segment of the line. The distance between 5 and 7 is greater than the distance between 50 and 52.

Distances on the exact number line fall under the arithmetical scale, whereas distances on the

approximate number line fall under the logarithmic scale. Another distinctive feature concerns the

so-called Weber-Fechner effect: The discriminability of two quantities by the use of the approximate

number line is a function of their ratio, whereas the discriminability of two quantities by the use of the

exact number line is independent of their ratio (Dehaene 2003; De Cruz 2008; Verguts and Fias 2008).
3 Some researchers admit that members of some indigenous social groups lack a counting system of exact

numbers. In Amazonia, New Guinea and in Australia, some cultures lack numerals for numbers greater

than four or five (Dixon 1980). The natural number list of numerals does not occur in the languages of

these groups. They have no verbal counting routine (Pica et al. 2004). These facts are advanced as

arguments for the strong Whorfian view (Dowker et al. 2008).
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There are at least four different paradigms for interpreting the acquisition and the

origin of the exact number line. The first one is based on two non-symbolic number

systems: the system of object-file representations (or the system of numerically
distinct individual) and the approximate number system (Carey 2001; Spelke 2000;

Le Corre and Carey 2007; Condry and Spelke 2008). The theory which accounts for

the origin of the exact number line in terms of these two systems is called the
parallel individuation and analog magnitudes hypothesis (Le Corre and Carey

2007). Models falling under the second paradigm assume that in the mind there is

encoded a special system—called the number sense (Dehaene 1997)—responsible

for non-symbolically representing large approximate numerosities. The theory of

these models is called the analog magnitudes alone hypothesis (Le Corre and Carey

2007). According to the hypothesis in question, number processing is an analogical

process working only upon approximate representations of numerosities (Dehaene

1997, 2001; Gallistel and Gelman 1990). Models of the third type employ the

concept of scalar implicature. According to these models, children arrive at precise

meanings of numerals by the use of scalar implicatures (Barner and Bachrach 2010)

and quantifiers. It is worth noting that the models under discussion provide strongly

Whorfian explanations of the origin of the exact number line. In accordance with

them, the acquisition of the exact number line needs language and logical tools. The

fourth and final paradigm is called the enriched parallel individuation alone
hypothesis (Le Corre and Carey 2007). It assumes that the process of the acquisition

of the exact number line consists in a bootstrapping process that employs the verbal

placeholder count list and markers for small sets encoded in the mind.4

The present paper does not discuss the question of the acquisition of the counting

competence. However, it should be emphasized that all the previously mentioned

models of the development of counting abilities presuppose the common dogma that

our simple, folk arithmetic, which is linguistically encoded in the mind, is based on

linear natural number representation. In the present paper, this classical conception

is rejected in favour of the competitive hypothesis according to which the basic

mature representational system of cognitive arithmetic is a structure composed of

many numerical axes with zero numeral as the common constituent. The formal

model underlying this representational system may be illustrated with the help of

the following diagram:

0

Rh Ri Rj Rk Rg

4 Rips et al. (2006) criticize the view that the mechanism for acquiring the exact number line involves the

procedure of inductive inference called bootstrapping. They refer to the counter-model of the

bootstrapping-rule. These researchers prove that models of this rule may have a circular structure and, for

instance, fall under the modular arithmetic structures (modulo10(n)). The conclusion is that the

bootstrapping-rule does not determine the standard model of natural numbers univocally.
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The vertical arrows in the diagram stand for numerical axes Rh ,…, Rg (or lists of

numerals). The bold arrow Rh is a distinguished one. It is the basic language-axis of

numerals (the verbal placeholder count list). Zero numeral is a common constituent

of all axes. The horizontal arrows designate the relation of accessibility holding

between axes. This relation enables the mind to find counterparts or correlates of

objects from one axis on a different axis. For instance, two apples from the axis of

apples may correspond to two pears from the axis of pears. The accessibility relation

functions as a formal structure determining lines of correlations connecting items

from different axes. If the accessibility relation holds between Ri and Rj, it means that

in the mind there is encoded an algorithm which establishes correlates on the axis Rj

of some or all items from the axis Ri. Lines of correlations may be comprehended as

analogous to Hintikka’s world lines.5 It should be emphasized that the accessibility

relation is not intended to satisfy a semantic function of determining truth-values of

arithmetical formulas. The diagrammed structure is a semantic model of the formal

theory which may be named the arithmetic of indexed natural numbers (INA). INA is

a generalization of Peano’s arithmetic (Krysztofiak 2008).

There are educational facts which verify the presented hypothesis. Seven-year-old

children are able to solve simple arithmetical story-tasks. The classical explanation

of this ability presupposes that in children’s minds there are encoded complex, set

theoretic, distributive structures alongside the basic exact number representation

upon which the mind operates to generate solutions of these story-tasks.6 To maintain

this view, therefore, is to assume that some fragments of classical set theory belong

either to the innate system of core knowledge or at least to the system of basic

knowledge being acquired in early stages of mental development. Note that 7-year-

old children are not able to express or describe the set theoretic operations allegedly

being executed when they solve the story-tasks. By virtue of the assumption under

discussion, however, their ability to operate upon set theoretic structures must be

reputed as either an innate skill or one acquired in the early stage of mental

5 Hintikka’s world lines are tools enabling the mind to identify individuals across possible worlds

(Hintikka 1970a, b). The correlation lines which connect axes are, in turn, tools enabling the mind to

identify correlates or equivalents of numerical items from some axes on other axes. For instance, two

apples correspond to two pieces of fruit on the axis of pieces of fruit. In another situation, two apples

correspond to four Euro if the price for one apple is two Euro. The correlation lines may be established in

the conventional way. However, they sometimes reflect some natural relations holding between various

categories of objects. Since every parrot is a bird, a correlate of two parrots on the axis of birds is two

birds. In this case, the accessibility relation between the axis of parrots and the axis of birds is established

in the natural way. If the accessibility relation does not hold between two axes, it means that the mind is

unable to establish correlates of numerical items from the first axis on the second axis. The accessibility

relation may also be comprehended in some metaphorical and metaphysical way. Numerosities

determined upon a given axis (a category) may be treated as having their appearances (or guises) on other

axes. For example, one person may have its appearances on the axis of legs as two legs, on the axis of

fingers as ten fingers, on the axis of wages as two thousands dollars. All things being traded in barter

transactions possess their appearances in their ranges of exchangeability. One slave may appear as two

horses or two hundreds guns, etc. To generalize, the accessibility relation holding between axes

determines a space of appearances of various numerosities correlated to a given axis. There are no naked

numerosities. They are clothed in categories (in axes).
6 In models of solving story-tasks proposed in (Riley et al. 1983) and in (Briars and Larkin 1984), the

children’s ability to manipulate set-theoretic categories belongs to the semantic stage of a strategy of

solving tasks.
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development. In light of this conclusion, the educational process of acquiring set

theory during mature professional studies should be treated as an activation or

extrication from unconsciousness of formal set theoretic structures encoded in the

deep strata of mind. Hence, the effectiveness of this process should be estimated as

very high and ‘easy’. The pedagogical experience of academic logic teachers is quite

the opposite. The success rate of teaching logic and set theory to students of

humanities is very low. This observation undermines the classical explanation, since

the latter assumes that solving simple story-tasks involves the exercise of tacit

knowledge concerned with complex set theoretic operations and structures. From the

presented cluster model’s point of view, by contrast, this situation may be explained

in such a way that when children solve simple arithmetic story-tasks, they do not use

set theory. For the aim of generating solutions to these tasks, they do not need to

activate in their minds complex set theoretic representations. It is sufficient that they

activate an appropriate cluster of numerical axes encoded in their minds for the

purpose of supplying solutions. The lack of set theoretic representations encoded in

their minds does not cause any difficulties in solving simple arithmetical story-tasks.

To conclude, the difference between the standard model and the model constructed in

the present paper consists in different empirical predictions. According to the first

one, if seven-year-olds are not able to operate upon the following set-theoretic

structures: the empty set, the sum of sets, the intersection of sets and operations of

deriving complex set-theoretic operations, they are not able to solve simple story-

tasks. According to the second one, if seven-year-olds are not able to operate upon

the following set-theoretic structures: the empty set, the sum of sets, the intersection

of sets and operations of deriving complex set-theoretic operations, they are,

however, able to solve simple story-tasks under the condition that their minds are

equipped with a representational arithmetic system composed of many numerical

axes.

The proposed formal model of basic mature arithmetic competence should be

verified by some empirical data. In addition, these data should falsify the one-axis

model.7 It is easy to notice that any fact of understanding complex numerals in acts

7 It should be noticed that in a volume of Behavioral and Brain Sciences comprising comments on Rips

et al. (2008), none of the thirty-one entries concern the confirmation of the hypothesis according to which

in the mind there is encoded exactly one number axis. Some cognitive researchers claim that the so-called

experimental SNARC (Spatial Numerical Association Response Code) effects of various types may be

treated as empirical evidence of the hypothesis according to which the mental representation of natural

numbers possesses the shape of a line oriented from the left side to the right one. It seems that such an

interpretation of SNARC experiments is not sufficiently justified. First of all, the SNARC effect only

appears in the case of small Arabic numerals: from 1 to 9. In the case of illiterate Arabic speakers, the

SNARC effect does not appear (Zebian 2005). Furthermore, some experiments reveal a reverse SNARC

effect for Arabic monoliterates (Zebian 2005). Experiments in which the performance of a task does not

require access to natural numbers semantics do not display the SNARC effect (Fias 2001). These facts

may only be interpreted as confirming the hypothesis that in the literate mind there is encoded at least one

mental line segment representing relatively small natural numbers whose length and spatial orientation

may be different in various instances. This does not mean, however, that in all cases of number processing

the mind activates exactly one mental line segment representing natural numbers. SNARC effects cannot

be interpreted as evidential markers of the formal structure of the natural number representation encoded

in the mind. Some researchers assert that SNARC effects confirm a thesis that the presence of the SNARC

effect during number processing is a marker of the semantic number processing during number

recognition. From this point of view, the absence of the SNARC effect is an index of the purely syntactic
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of perceiving them cannot be explained merely by reference to the semantic

relations holding between digits and numbers located on the numerical axis. To

understand the numeral 333, the mind has to execute many operations: (a) to refer to

the third number on the axis of hundreds, (b) to refer to the third number on the axis

of tens, (c) to refer to the third number on the axis of units and finally (d) to map all

these numbers into the distinguished axis of all natural numbers. Let us note that the

numeral 333, being comprehended in the surface way, fails to satisfy syntactic

conditions of a well-formed expression on the ground of categorial grammar. Each

complex expression should contain at least one functor. In the numeral 333, in its

surface structure, there only occur individual expressions without functors.

However, the mind does not attribute the same meaning to the digit 3 on each

place of its occurrence in the numeral 333. How this is possible may be explained by

attributing some tacit, deep syntactic structure to the numeral 333.8 If the numeral

333 is to be a well-formed expression, its tacit syntactic structure should consist of

at least three functors designating three axes as syntactic positions in the numeral

under analysis and connecting them with the digit 3. According to the one-axis

model, positional functors hidden in deep structures of numerals must be treated as

markers of some items on the axis of natural numbers. In this case, however, their

semantic category cannot be distnigusihed from the semantic category of numerals.

For instance, the functor of the syntactic position of tens would be interpreted as a

marker of the number ten. The numeral 10 is also a marker of the number ten. In this

way, the functor of the syntactic position of tens and the numeral 10 would

designate the same number. According to the many-axes model proposed in the

paper, such a conclusion may be avoided.9

2 Philosophical Preliminaries

Our minds are able to order our experiences by the use of various calendars.

Systems of days in a week or in a month, or systems of months in a year, are

Footnote 7 continued

processing of numerals (Fias et al. 1996). This interpretation, however, cannot also be treated as sufficient

reason for the acceptance of the thesis saying that the SNARC effect is an indice of the mental number

line encoded in the mind.
8 These tacit, deep structures of numerals should be treated differently than Chomsky’s deep structures of

sentences. According to the Chomskian approach, any terminal constituent of a deep structure is

articulated in a surface structure in the prosodic way. For example, if in a deep structure of a sentence

there occurs some functor (a verb, an adjective or an adverb), it must also appear as a terminal, lexical

output in a surface structure. In the case of numerals, positional functors occurring in their deep structures

are not articulated in a surface structure in the prosodic way. Functors of this type may be called Jumblese
predicates. In (Sellars 1962), the language of Jumblese is construed with the aim of expressing

Wittgenstein’s logical atomism without universals. Its peculiar feature is that all predicates occurring in

sentences are represented by spatial arrangements of individual expressions. Differences in such

arrangements would manifest multiplicity of Jumblese predicates. Since the linear order of digits in a

numeral determines positional functors in its deep structure, it may be said that numerals possess deep

Jumblese structures.
9 According to the one-axis model of natural numbers representations, it is impossible to explain how

syntactic Jumblese structures of Arabic numerals designate or refer to natural numbers.
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instances of calendrical representational structures encoded in the mind. By

ascribing of elements of these systems to experienced events, the mind generates in

itself ordered linear representations of various histories. These calendar systems

may be understood only under the condition that the mind ascribes numerals to

elements of these systems (for example: Monday—one, Thuesday—two, Wednes-

day—three, etc.). One may call them time-forms encoded in the mind. In many

cases, it seems that the mind uses multi-temporal calendars to order various

experienced contents. For instance, to conceptualize various literary contents of

fiction, the mind must sometimes comprehend them in a multi-temporal framework.

Conceptualizing their everyday experience, people use such metaphors as double
life or double home, which may be interpreted as a symptom of the mind’s applying

a bi-temporal cognitive form to the conceptualization of its everyday experience.

Ramified computational cognitive processes exemplify the mind’s entanglement in

multi-temporal structures. In ramified proofs, each proof-branch constitutes a

separate computational time-axis. In science, evolutionary models of life-develop-

ment are presented with the help of tree-structures which may be comprehended as

isomorphic with different multi-temporal structures of evolutionary ramified time.

These examples of our mental activity in the domains of Ethos and Logos suggest

that the time-representation encoded in the mind cannot be considered as a one-

temporal structure. Hence, in light of the generative approach, the mind should be

able to generate these non-linear calendric representations. This ability may be

explained by reference to the cluster model of numerical axes.

Peano’s arithmetic is the theory of an algebraic structure composed of the domain

with the distinguished element zero and the one-placed operation of sequence. This

operator is responsible for the production of the denumerable infinite set of objects

with the first element and the linear order. In light of Kantian epistemology, this

structure may be interpreted as the mental representation of discrete time. Moments,

as elements of time, may be regarded as elements of the domain of natural numbers,

and the flow of time may be represented by the operation of sequence. Acts of

counting may be interpreted as acts of attributing moments to entities which belong

to any domain being counted. In such a perspective, numerals appear to be markers

of moments attributed to counted entities. The distinguished zero-numeral is the

marker of the special moment which opens any process of counting. In light of this

view, arithmetical operations should be treated as functions which attribute some

moments to other moments. Hence, arithmetical theorems are descriptions of

properties of these functions by virtue of which a counting subject may verify the

correctness of his/her calculations.

In accordance with the Kantian view, the mind is equipped with exactly one

encoded form of time which enables the cognising subject to count and compare the

numerosities of various domains as well as to verify the correctness of numerical

computations. This means that the mind operates with temporal structures consisting

of exactly one time-axis. This claim may be baptised as temporal cognitive monism.

Translated into the language of the modern cognitive debate, this means that the

number sense (Dehaene 2001; Giaquinto 2001a) or, in other words, the arithmetic

competence operates upon the one-axis time representation. From this point of view,

our ability to detect or grasp by acquaintance approximate numerosities (Giaquinto
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2001a) consists in our capacity to estimate the approximate length of operational

time needed to count those numerosities. In this case, moments on the time-axis are

units of time-measure. It seems that such a paraphrase of the notion of number sense

into the framework of the Kantian epistemology is justified. The Kantian a priori

forms of time and space may be treated as representational systems of core

knowledge. Kant’s form of time is the core number representation enabling the

activity of the number sense (on core knowledge, see Spelke and Kinzler 2007).

The history of mathematics shows that Kant’s spatial monism can no longer

be regarded as adequate. The discovery of non-Euclidean geometries may be

interpreted against spatial monism. It is justified to assume that the mind is equipped

with more than one spatial a priori form. In ordinary acts of comprehending

empirical reality, the mind uses Euclidean space to order its various fragments. In

acts of mathematical modelling some physical processes—for instance, relativistic

ones—the mind must select non-Euclidean spaces. However, the point cannot be

applied to arithmetic and the form of time conceived as its proper object of research,

because up to the present there has not been constructed any alternative arithmetic of

natural numbers.

If mentally encoded time representations are treated as number representations,

then the concept of multiplicity of times should be understood as the representa-

tional structure of numerals being indexed with different time-axes. And it is

obvious that such numerals cannot designate standard natural numbers. They

designate indexed natural numbers which constitute a semantic model of the

arithmetic of indexed numbers (INA), different from Peano’s arithmetic. This

difference may be expressed in such a way that in INA there occur several numbers

ones, several numbers twos, several numbers threes, etc., whereas in Peano’s

arithmetic there exist exactly one number one, exactly one number two, exactly one

number three, etc. Moreover, several different operations of addition and

multiplication can be defined for indexed numbers, whereas for standard natural

numbers there exist exactly one operation of addition and exactly one operation of

multiplication. In terms of cognitive arithmetic, this means that the mind is

equipped with a generative representation of indexed numbers which enables it to

generate appropriate numeral structures (called ACR-structures) which are subse-

quently used to solve simple arithmetical tasks. One of these ACR-structures is the

linear structure of standard numerals, being a special kind of indexed numerals.

Standard natural numbers, however, appear to be an insufficient tool for solving

simple story-tasks by seven-year-olds.

In light of Kantian epistemology, ACR-structures may be interpreted as structures

composed of different time series (time-axes). Each axis in any ACR-structure may

be interpreted as some time series encoded in the mind. ACR-structures are

generated by the mind from the basic structure, which is a semantic model of INA

(INA-structure) for their use in processes of solving arithmetical tasks. This

structure functions as a hardware computational program which is transformed by

the mind by virtue of various operations. There are two types of these operations.

The former concerns time-axes and the latter deals with accessibility relations. First,

the mind must distinguish time axes in a given ACR-structure and, subsequently, it
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has to impose a net of appropriate accessibility relations upon a distinguished set of

time-axes.

It seems that the INA-structure is not a ‘ready good’ encoded in the mind.

It might be suggested that the INA-structure is synthesised by the mind in at least

two stages. The first stage comprises processes of building the INA-structure which

result in the constitution of finite time-axes the lengths of which are determined by

small numerals from zero to ten (depending on the notational system being learned

by children). The distinguished language-axis (the verbal place-holder count list) in

the INA-structure consists of small numerals. By generating of ACR-structures, the

mind expands or prolongs the verbal place-holder count list. The mechanism of this

operation may be illustrated by the following example: The mind activates the

ACR-structure composed of three axes: (i) the language-axis: zero, one, two, …,
ten, (ii) the axis of units, and finally (iii) the axis of tens. When the mind activates

item one on the axis of units and the item one on the axis of tens, it must

subsequently map the activated complex of items onto the first axis, which is the

verbal count list. Because this axis is too short, the mind is forced to expand it and

introduce the numeral eleven to the language-axis. The constitution of the mature

INA-structure in the mind is probably finished in some early period of children’s

school education. At any rate, the language-axis of the mature INA-structure is the

infinite mental line of numerals. The empirical manifestation of the acquisition of

this structure by a child is that he/she is able to produce any verbal numeral and any

Arabic numeral (in cultures using this notational system).

Moments as constituents of time-axes in ACR-structures and in the INA-

structure are tools of counting along each axis. They function as meta-represen-

tations of a subject’s ostensive acts of indicating an individual object in a series of

such acts. The mental representation of the numeral two on a given axis is an item

representing the second act of indicating an object in any series of acts of indication.

For instance, the mental representation underlying the indexed numeral two apples
represents the second act of indicating an apple in a given sequence of apple

indications. Hence, any time is understood as a linearly ordered meta-representa-

tional structure which comprises meta-representations of acts of indication directed

towards objects of a given category. Any conscious experience of the flow of time

might be explained as conditioned by processes of activation in the mind of any

meta-representational time-structure. As outlined, this explanation is even compat-

ible with the fact that the experience of the flow of time is very clear and expressive

during ostensive counting of large sets of objects. To summarize, a child starts to

count when his/her mind is equipped with meta-representations of ostensive acts

of indication. This means that a child must first learn to control his/her acts

of reference directed towards objects in the world. An execution of any act of

controlling results in encoding an appropriate meta-representation. Sequences of

such meta-representations are stored in an episodic memory. Their activation in the

mind culminates in various experiences of the flow of time. To speak metaphor-

ically, time-experiences map series of meta-representations of ostensive acts which

are activated during our mental functioning. This means that children experience

various time-series. The experience of time during counting cars parked in front of a

Axiomathes (2012) 22:433–456 441

123



building concerns a different time-sequence than the time-sequence experienced

while counting the people sitting in those cars.

Combining moments by the mind along each axis consists of processes of

activating successive meta-representations of appropriate acts of indication directed

towards elements of a given category. A child knows that, for instance, there are

three apples on a table because in his/her mind there are activated three succeeding

meta-representations of acts of indicating an apple. It may be said that in some

special way counting objects is the same as counting acts of reference directed

towards objects. Hence, acts of counting fall under the category of acts of meta-

reference.10

3 The Classical Model of Counting Abilities

Models of counting acts executed during the solution of arithmetical story-tasks by

children are constructed as experts systems on the basis of various cognitive theories

which assume the existence of the counting competence encoded in the mind. These

models are presented as systems simulating children’s counting acts (Briars and

Larkin 1984). In accordance with the main assumption underlying these models,

processes of solving simple story-tasks comprise two stages: (a) a semantic analysis

of the content being expressed by texts of tasks and (b) a counting process (Riley

et al. 1983). The stages intertwine. In the first stage, the mind generates an

arithmetic symbolic representation which takes the shape of some equation with an

individual variable. The use of set theoretic categories takes place in this stage. It

should be noticed that, from a logical point of view, the stages cannot be conceived

as independent. Set theoretic representations formatted in the semantic stage fulfil

inferential roles in the counting stage. That is why any reconstruction of cognitive

recursive acts belonging to the counting stage should also comprise set theoretic

representations entangled in a representational system underlying any process of

solving a story-task.11 The below-presented analysis of the functioning of the

10 It is possible to construct a formal model of the experiences of the flow of time. Since these

experiences are evoked by processes of activation of time-axes which are, in turn, composed of moments

as meta-representations of acts of indication, such a formal model should be founded on a formal model

of a moment as an appropriate meta-representation encoded in the mind in some peculiar way. It seems

that some phenomenological insights concerned with time-consciousness may help in formally

comprehending these structures. At any rate, they must reflect retentional and protentional moments of

counting acts (on formalizing phenomenological concepts, see Yoshimi 2007).
11 In Briars and Larkin (1984), a special model (CHEAPS: concrete human-like inferential problem

solver) is constructed which simulates strategies for solving simple story-tasks. In the first stage, the

model attributes an appropriate set theoretic category to any word of the task. For example, names of

individuals, called set identifiers (Joe, Tom), may be treated as names of sets. Verbs (for instance: to

give), in turn, may be translated into some set theoretic operations (increases, decreases, combinations

and comparisons involving sets of objects) (Riley et al. 1983, 159). Many authors (Halberda and

Feigenson 2008) emphasize that the ability to manipulate with sets, understood as ‘‘abstractions that exist

in the mind’’, is ‘‘needed to bridge math to the world’’ (p. 655). These authors notice that the approximate

number system and, perhaps, the exact number system are not sufficient conditions for explaining

children’s counting abilities. At any rate, to supply solutions of simple story-tasks, the mind must be able

to operate with sets and set relational structures (Cummins 1991).
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classical model of counting abilities is based on the above-sketched assumptions.

The aim of this analysis is to display the high level of complexity of set theoretic

categories entangled in processes of solving simple story-tasks. This result

motivates us to put the following question: Is it possible for seven-year-old

children to have access to very sophisticated mental representations at an

unconscious level, while lacking the ability to manipulate such representations

consciously, as external symbolic systems?

The empirical research in cognitive linguistics, stemming from the work of

Rosch (1973, 1975), shows that in everyday life, the mind does not operate with

precise set theoretic categories. Children rather use prototypes to categorize their

experiences. In light of this view, it would be difficult to build a model of the

acquisition of set theoretic representations in the early stage of mental development.

It seems that this process of acquisition takes place in the late-schooling stage of

child development. Since the prototypes-representations cannot serve as tools

needed to solve arithmetical story-tasks, the mental representations enabling

children to solve story-tasks should be formal structures different from set theoretic

formal structures.

Let us consider the following story-tasks operating in the framework of sortal

count nouns:

(1) John has got one apple. Daddy gives John two apples. How many apples has

John got?

(2) John has got one parrot. Daddy gives John two canaries. How many birds has

John got?

(3) John has got one parrot. Daddy gives John two canaries. Mummy gives John

two rabbits. How many birds has John got?

(4) John has got one apple. Daddy gives John two limes. How many sweets has

John got?

What are the cognitive acts that the mind executes during the process of solving

the presented story-tasks? The response to this question requires the formal

reconstruction of these tasks. In the sketched manner, one may do it in the following

way (where ‘xa’, ‘xb’ and ‘xs’ are variables ranging over cardinal numbers of

appropriate categories: apples, birds and sweets in John’s possession):

(1) 1a ? 2a = xa

(2) 1p ? 2c = xb

(3) 1p ? 2c ? 2r = xb

(4) 1a ? 2l = xs

In these equations, there occur indexed numerals with indexes of appropriate

categories. Such expressions do not belong to the formal language of Peano’s

arithmetic. What kind of structures do these indexed numerals designate? The

natural, intuitive answer to this question might take the following shape: Indexed

numerals express the cardinalities of collections or sets marked with categories that

correspond to the indices. For instance, numerals ‘1a’, ‘2c’, respectively, designate

cardinal numbers of appropriate categories: one apple and two canaries. In the set

theoretic language, indexed numerals may be understood as peculiar predicates
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attributed to sets. This suggests that they express properties of categorial cardinality.

In this perspective, indexed numerals ‘1a’, ‘2c’ might be expressed with the use of

such neologisms as one-appleness and two-canaryness. The formal definition of

numerals, indexed with a category, runs as follows (where variables ‘x’, ‘y’ range

over the domain of sets, the variable ‘n’ represents a cardinal number, and ‘Card’

stands for the cardinality function):

(DF 1) nx(y) :df [Card(y) = n ^ y , x]

The above-presented equations may be transformed, with the help of (DF 1), into

the following formulas:

(1) 1a(x) ^ 2a(y) ? na(x [ y)

(2) 1p(x) ^ 2c(y) ? nb(x [ y)

(3) 1p(x) ^ 2c(y) ^ 2r(z) ? nb(x [ y [ z)

(4) 1a(x) ^ 2l(y) ? ns(x [ y)

The process of solving the analysed story–tasks consists in substituting the variable

‘n’ with appropriate constants in formulas (1)–(4). The solutions to the tasks are

correct when formulas (1)–(4) become, by virtue of substitutions, true propositions.

That is why the solutions may be presented in the following way:

(5) 1a(x) ^ 2a(y) ? 3a(x [ y)

(6) 1p(x) ^ 2c(y) ? 3b(x [ y)

(7) 1p(x) ^ 2c(y) ^ 2r(z) ? 3b(x [ y [ z)

(8) 1a(x) ^ 2l(y) ? 0s(x [ y) or 1a(x) ^ 2l(y) ? ?s(x [ y) (where ‘?’ marks that

the task is not solvable).

What operations the mind executes in the course of passing, respectively, from

formulas (1)–(4) to propositions (5)–(8) may be decided by the reconstruction of

inferential mechanisms of the following inferences:

(9) 1a(x) ^ 2a(y) ‘ 3a(x [ y)

(10) 1p(x) ^ 2c(y) ‘ 3b(x [ y)

(11) 1p(x) ^ 2c(y) ^ 2r(z) ‘ 3b(x [ y [ z)

(12) 1a(x) ^ 2l(y) ‘ 0s(x [ y)

The specified inferences are enthymematic in such a way that they assume some

tacit knowledge which concerns some empirical and some logical and set-theoretic

relations holding between categories of the sets being counted. In all analysed

inferences, the process of passing from premise to conclusion involves the use of the

following definitional condition:

(DF 2) x \ y = [ ? [Card(x) ? Card(y) = Card(x [ y)]

In all tasks, the sets upon which the mind operates to arrive at solutions are

exclusive. That is why the relationship between cardinalities and sets, expressed by

the condition: Card(x) ? Card(y) = Card(x [ y), is employed by the mind in all

solutions. It means that a seven-year-old child is able to map the cardinalities of set

theoretic sum-constructions into the abstract model\Card, ?[. The use of (DF 2)

in solving arithmetical tasks also requires two additional abilities: the capacity to
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intuitively comprehend the empty set and the ability to understand the set theoretic

operation of set intersection.

Let us analyse the first task. The child’s mind starts from two premises: (1) 1a(x),

(2) 2a(y). Subsequently, it reads out of the content of the task the condition: (3) x \
y = [. From (1) and (2), on the basis of the definition (DF 1), it derives that: (4)

Card(x) = 1, (5) Card(y) = 2. By the use of (3), the child’s mind counts, by means

of the memory retrieval process (on models of retrieving arithmetic facts from

memory, see: Lemaire et al. 1996; Ashcraft 1995), that (6) Card(x) ? Card(y) =

1 ? 2 = 3. Finally, it gives the answer: (7) Card(x [ y) = 3. It is easy to see that

the explanation of the child’s ability to solve arithmetic story-tasks of the first type,

based on the classical model, works very well. To solve the first task, the subject must

be acquainted with the empty set, be able to operate on set theoretic intersections and

sums of sets, attribute cardinalities to denumerable sets of individuals and store

simple arithmetic facts in his/her long term memory. Not all of the mentioned

abilities belong to the register of basic skills classified as constitutive components of

the number sense (on components of number sense see: Berch 2005). In particular,

the capacity to comprehend the empty set as the result of various set theoretic

operations upon sets rather belongs to the domain of sophisticated logical abilities.

Hence, in order to solve the tasks of the first type, children must acquire not only their

arithmetical skills but also their set theoretic, logical capacities.

The solution of the second task requires additional skills which enable the child’s

mind to transform predicates of categorial cardinality with some determinate

indexes into predicates with different indexes. In other words, the child’s mind is

equipped with an inferential mechanism which is responsible for the transformation

of predicates ‘1p’ and ‘2c’ into the predicate ‘3b’. When seven-year-old children are

asked how they reach the solution, they usually reply that parrots and canaries are

birds. Such a response indicates that they do not add sets in the standard way. They

must apply another operation of summing sets. It is possible to define, on the ground

of the theory of sets, the operation of sum with a categorial index.

(DF 3) a [ x [z y :df (a [ x \ z _ a [ y \ z)

(DF 3*): x [z y =df [(x \ z) [ (y \ z)]

Therefore, inference (10) fails to offer a precise formalization of the second task.

Rather, the desired formalization should take the following form:

(10*) 1p(x) ^ 2c(y) ‘ 3b(x [b y)

When the mind solves the task, it assumes additionally that: (1) p , b, (2) c , b.

Subsequently, it accepts premises of (10*): (3) 1p(x), (4) 2c(y). By definition (DF 1),

the mind derives from (3) the following propositions: (5) Card(x) = 1, (6) x , p. In a

similar way, from (4) it derives: (7) Card(y) = 2, (8) y , c. From (1) and (6), by

transitivity of inclusion, the mind infers: (9) x , b and, similarly, from (2) and (8) it

arrives at: (10) y , b. On the basis of (9) and (10), respectively, there hold: (11) x \
b = x, (12) y\ b = y. Hence, by definition (DF 3*), it is true that: (13) x[b y = x[ y.

By the law of extensionality for identity, the mind infers the equality: (14) 3b(x [b

y) = 3b(x [ y). Since the task presupposes the assumption: (15) x \ y = [, the mind

infers: (16) Card(x[ y) = Card(x) ? Card(y) = 1 ? 2. By retrieving from memory
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that 1 ? 2 = 3, the child’s mind gives the response that: (17) Card(x [ y) = 3.

Finally, by virtue of (9), (10), (17) and definition (DF1), it infers that (18) 3b(x [b y).

In comparison with the first task, the solution of the second task requires the

child’s mind to construe the indexed operation of the sum. This construction

involves the operation of the intersection of sets. That is why the set theoretic

machinery employed by the mind to solve the second task is more complex than the

set theoretic constructions used for supplying the solution of the first task. In other

words, the cognitive competence needful for solving the second task involves

sophisticated abilities to operate upon sets.

The set theoretic structure of the third task takes the following form:

(11*) 1p(x) ^ 2c(y) ^ 2r(z) ‘ 3b(x [f y [f z)

The tacit knowledge needed to solve this task may be expressed by formulas: (1)

p , b, (2) c , b, (3) r \ b = [. In contrast with the second task, the child’s mind

must comprehend that the intersection of categories of rabbits and birds is the empty

set. The solution of the analysed task requires that the mind conducts the following

process of deduction (the inferential mechanism is marked in brackets on the right):

The above-presented proof fails to reflect all the recursive proof-steps of the

reconstructed reasoning. However, it succeeds in identifying the set theoretic

abilities required for solving the task. Their formal complexity renders the task

very difficult for even average adult students. Only very good pupils with special,
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above-average logical and mathematical capacities are able to generate this proof

and evaluate its logical correctness. What renders the task difficult is that the set

theoretic processing is united with the relevant acts of adding numbers. On the

classical account, children must use not only set theory but also the arithmetic of

natural numbers for the aim of supplying the solution of the task. Since the

deductive process of reaching the solution comprises at least twenty six proof-steps,

which are based on definitions of various complex set theoretic operations as well as

on memory retrieval of numerical facts, it is difficult to explain, on the classical

account, how children solve the task very quickly. The activation of mentally

encoded and tacit set theoretic representations should take more time than the

average time in which children actually solve the task. Moreover, outstanding adult

students of logic, equipped with set theoretic definitions and theorems, need more

than 5 min to execute the presented proof. Contrast this with seconds it takes some

pre-school children to find the solution.

To conclude, it is obvious that the process of solving the story-tasks presented

above must be founded on processing some formal representations encoded in the

mind. If these representations are conceived in accordance with the classical

model—that is, as set theoretic structures—then it is difficult to reconcile the

following two facts: (1) that good students, after being taught logic and set theory,

must put a lot of effort into formalizing analysed story-tasks, whereas they solve

these tasks very quickly, that is, in seconds; and (2) that average intelligent seven-

year-old children can also solve tasks very quickly, whereas they are not able to

learn logic and set theory. Therefore, it is reasonable to assume that mentally

encoded formal representations needed to solve these simple story-tasks are not set

theoretic structures.

The last task is peculiar because children may formulate two different though

equally correct solutions. The first one—which says that the task is not solvable—

may be explained in accordance with the classical model in such a way that some of

the mind’s inferential and generative mechanisms can be blocked if a logical

independence holds between input and output representations. The process of

blocking inferential mechanisms may be represented as follows (where the question

mark designates that the task is not solvable):

(12*) 1a(x) ^ 2l(y) ‘ ?s(z)

The tacit assumptions of the task are expressed by the following formulae: (1) x \
s = [, (2) y \ s = [. Since, by virtue of ?s(z) and definition (DF 1), it is the case

that (3) z , s, it is evident that the cardinality of set z is independent of the

cardinality of the input sets: x and y. That is why children who assert that the task is

not solvable explain their decision by saying that it is unknown how many sweets

John had had before daddy gave him two limes. No implicit premises or tacit

assumptions help children to find a definite response. This explanation, however, is

not satisfactory, because the blockade of inferential processing caused by the lack of

input information appears in the meta-inferential level of information processing,

and hence may be interpreted as the manifestation of the mind’s deductive

competence acquired at the mastery, meta-theoretic level.
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The second solution of the task is such that John has got no sweets, which may be

represented with an inference of the form:

(12**) 1a(x) ^ 2l(y) ‘ 0s(x [s y)

By virtue of (1) x \ s = [ and (2) y \ s = [, it follows that (3) x [s y = [.

Therefore, (4) Card(x [s y) = 0. On the basis of (3) and the law (5) [ , s, the

mind infers that (6) 0s(x [s y). It is worth noticing that the premises of the inference

(12**) are irrelevant to its logical correctness. The disadvantage of this explanation

resolves itself to the conclusion that the empty set of sweets is a result of applying

the operation [s to the input sets x and y.

It is easy to see that the two alternative solutions are founded upon different

formal conceptualizations of the output set. In the first case, the output set does not

result from the operation of [s applied to the input sets. In the second case,

conceptualization of the output set depends on the input sets. Hence, the following

issue arises: what are the causes of these different formal conceptualizations of the

task in children’s minds? It seems that the classical model prefers the second

conceptualization because of its compatibility with conceptualizations of tasks from

(1) to (3). However, this situation requires seven-year-old children to operate upon

the empty set in a very sophisticated way.

4 Basic Mature Numerical Abilities in Light of the Arithmetic of Indexed
Natural Numbers

A child’s numerical abilities may be explained as being founded on the processing

of a special arithmetic structure here referred to as the cluster of numerical axes.

The theory of such a structure is the arithmetic of indexed natural numbers (INA)

(Krysztofiak 2008). By virtue of various extensions of INA, the mind transforms the

input cluster of numerical axes into the structures which function as arithmetic

cognitive representations (ACR-structures) underlying the contents of different

arithmetical story-tasks being solved by children. In other words, the input structure

functions as a generator of ACR-structures relevant for various computational aims

settled in story-tasks.

4.1 The Arithmetic of Indexed Natural Numbers

The language of INA comprises the following primitive syntactic categories of

expressions: (1) standard expressions of the second order predicate calculus with

identity and functions; (2) individual variables ranging over the set of moments

(understood as tools of counting): x, y, z; (3) the individual constant 0 and

individual constants standing for moments: x, y, z; (4) function variables ranging

over a set of numerical axes: i, j, k, l, m, called variable indices; (5) function

constants which designate time-axes: i, j, k, l, m, called constant indices; (6) the

predicate N which expresses the property of being an indexed natural number; (7)

the function S which forms with indices (variables or constants) expressions of

indexed functions of sequence: Si, Si, Sj, Sj, etc.; (8) numeral constants which
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designate indexed natural numbers (these constants are introduced to the system by

definitions): 1i, 1j, 2i, 2j, etc.; (9) numeral variables: 1i, 1j, 2i, 2j, etc. (the low indices

in these expressions are variable indices, in contrast to numeral constants in which

indices are constant indices); (10) standard brackets used in predicative contexts and

square brackets used in function contexts.

The language of INA comprises two distinct syntactic categories of individual

expressions. The first category P embraces expressions of two types: (2) and (3).

Expressions in category P serve as tools for representing moments. The second

category of individual expressions is a derivative one. Its elements are called

numeral expressions. This category is designated by the letter L. The definition of

L requires the use of the category of indices I to which there belong expressions of

two types: (4) and (5), and additionally the category of expressions representing

indexed functions of sequence. Let the letter F be the name of this category. The

category L is defined in the following way:

(Df. L) (i) a [ P ^ b [ I ? b[a] [ L
(ii) a [ L ^ b [ F ? b[a] [ L

Numeral expressions are intended to represent or designate indexed natural

numbers. These objects are values of indices which, in turn, are considered as

functions representing numerical axes. The arguments of these functions are

moments represented or designated by expressions belonging to the category

P. In light of the second condition in (Df L), indexed natural numbers are also

values of indexed functions of sequence applied to indexed natural numbers.

In accordance with (i), expressions of the shape: i[x], i[0], i[x], i[0], i[x], are numeral

expressions. In light of (ii), if any indexed function of sequence is applied to

expressions of the above-mentioned shapes, the resulting expressions, such as:

Si[i[x]], Si[i[x]], Sj[i[x]], Si[i[x]], etc., are also numeral expressions. Furthermore,

since indexed functions of sequence may be iterated, expressions of the shape:

SiSi[i[x]], SiSi[i[0]], SiSj[i[x]], SiSj[i[x]], SiSj[i[x]], etc., are also numeral expressions.

Because numerals may be very long expressions composed, for instance, of a

million iterations of the indexed function of sequence, one may introduce into the

language of INA definitions of their numeral abbreviations which are divided into

two types: numeral constants and numeral variables. Numeral constants are defined

as follows: 0i = i[0], 1i = Si[i[0]], 2i = SiSi[i[0]], 3i = SiSiSi[i[0]], etc. Numeral

variables are introduced into the system by definitions of the following shapes:

0i = i[0], 1i = Si[i[0]], 2i = SiSi[i[0]], 3i = SiSiSi[i[0]], etc. For example, the

difference between numerals ‘1i’ and ‘1i’ resolves itself into that the first numeral is

a variable ranging over the set of indexed natural numbers which occupy the first

location after zero on any numerical axis, whereas the second numeral designates

the settled indexed number which occupies the first location after zero on the

numerical axis i.
The axiomatic of INA comprises three types of axioms: (i) axioms which

characterise categories of moments and numerical axes without reference to indexed

functions of sequence, (ii) axioms which establish properties of indexed functions of

sequence, and finally, (iii) axioms which define various operations upon indexed

natural numbers.
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(A1) (Vi) (Vj) i[0] = j[0]

(A2) (Vi) (Vj) (Vx)(x = 0 ^ i = j ? i[x] = j[x])

(A3) (Vi) (Vj) (Vx) (Vy)(i[x] = j[y] ? x = y)

(A4) (Vi)(Vx) N(i[x])

(A5) (Vi) (Vx)(Ay) Si[i[x]] = i[y]

(A6) (Vi) (Vj) (Vx)(i = j ? Si[j[x]] = i[0])

(A7) (Vi)(Vx) Si[i[x]] = i[0]

(A8) (Vi) (Vx) (Vy) (Si[i[x]] = Si[i[y]] ? i[x] = i[y])

(A9) (Vi){W(0) ^ (Vx)(W(i[x]) ? W(Si[i[x]])) ? (Vx) W(i[x])}

Axiom (A1) expresses the idea that all numerical axes originate from a common

number, namely the number zero. Axiom (A2) asserts that two numbers with

different indices, if they are not identical with zero, are different numbers. For

instance, if there are given two numerical axes, namely the axis of apples and the

axis of sweets, then, in accordance with (A2), two-appleness and two-sweetness are

different indexed natural numbers. Axiom (A3) establishes that if two indexed

natural numbers are one and the same number, then arguments of given indices in

numbers must be also identical. Axiom (A4) says that every object located on any

numerical axis generates an indexed natural number. According to axiom (A5), any

i-function of sequence always assigns some i-indexed number to any i-indexed

number. This means that indexed functions of sequence do not produce values

outside their corresponding numerical axes. By virtue of axiom (A6), if any

i-function of sequence is applied to indexed natural numbers belonging to numerical

axes other than the i-th numerical axis, then the value of the i-function of sequence

is zero. In other words, (A6) expresses the intuition that it is inappropriate to apply a

function of sequence, correlated to a given axis, to any number belonging to a

different axis. This inappropriateness is marked in such a way that the result of the

improper application of any function of sequence is always zero. In axiom (A7), it is

settled that the number i[0] is not a successor of any number on i-th axis. Axiom

(A8) establishes that any function of sequence in the range of appropriate

applications is a one-to-one function. Axiom (A9) is the principle of induction and

as such is the schema of axioms. For each axis, if it is the case that zero satisfies

some propositional function W(…) and if it is the case that if every number from a

given axis satisfies the propositional function W(…), then the successor of this

number also satisfies the propositional function W(…), then every number from a

given axis satisfies the propositional function W(…).

In the arithmetic INA there may be defined many various indexed operations:

indexed addition, indexed multiplication, involution, subtraction, factorial, etc.

Standard operations upon natural numbers, defined in Peano’s arithmetic, appear to

be special cases of corresponding indexed operations upon indexed natural numbers

under the condition that all indexes in a formula are identical. For the sake of the

present paper, only the operation of indexed addition is introduced. The definition

employs the notion of correspondence between axes. The operation of addition may

be executed on various axes. Numbers from different axes may be added on another

axis. For instance, the number of canaries and the number of parrots may be added

on the axis of birds. In this case, the correspondence between the axis of canaries
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and the axis of parrots is of the type, one canary-to-one parrot. However, in other

cases, this relation may fall under a different pattern. For instance, one man may

correspond to ten fingers and one car to four persons. When the mind’s task is, for

example, to count the number of persons in four full cars, first it must find the

counterpart of the indexed number one-carness on the axis of persons. In this way,

when the mind adds two cars to three cars and counts the number of persons, it must

execute the addition of cars on the axis of persons. In any case, the correspondence

function may be different. This function is assumed by the mind on the basis of

empirical or conventional rules. Let Cork be the function of correspondence on the

axis k. This means that Cork returns values of indexed numbers from various axes

on the axis k. The definition of k-indexed addition runs as follows:

(DF ?k) (1) k[0] ?k k[x] = k[x]

(2) Sk[k[x]] ?k k[y] = Sk[k[x] ?k k[y]]

(3) i[x] ?k j[y] = Cork(i[x]) ?k Cork(j[y])

For example, the calculation: one canary plus one parrot on the axis of birds (1c ?b

1p), proceeds in accordance with the following recursive schema: 1c ?b

1p = Corb(1c) ?b Corb(1p) = 1b ?b 1b = Sb(0b ?b 1b) = Sb(1b) = 2b.

4.2 Generation of Arithmetic Cognitive Representations

Arithmetic cognitive representations are structures founded upon semantic models

of INA. These models have shapes falling under clusters of infinite axes. The

number of axes in a model is not determinate. In the ultimate case, semantic models

of INA consist of exactly one axis. By analogy to Chomsky’s generativism, these

models may be treated as deep arithmetic representations. To solve an arithmetical

task, the mind must accommodate one of these models to the content of the task.

This process of accommodation eventuates in generation of a new structure, called

the arithmetic cognitive representation, whose function is to represent the task in the

mind. Such arithmetic cognitive representations may be called, by analogy to the

Chomskian approach, deep arithmetic representations.12

Let ACR be any arithmetic cognitive representation. It may be defined as an

n-tuple of the form:\INA, U, I, Acc, COR[, where INA is any semantic model of

INA (indexed numbers arithmetic), U is the set of some axes belonging to INA,

I is the distinguished axis, called the linguistic line of numerals, Acc is the

accessibility relation determined upon elements of U and COR is the set of all

functions of correlation between indexed numbers from axes belonging to U. Any

structure of the form:\INA, U, I, Acc, COR[, must satisfy the following minimal

conditions:

12 In some theories of mathematical thinking, motivated by the constructivist paradigm, the mathematical

cognitive development of the mind is comprehended as stemming from deep intuitions of mathematical

concepts. These intuitions supply us with stable and context-independent meanings. Moreover, these

intuitions may work in our minds without definitions of mathematical concepts. ‘Deep intuitions are not

separate mental objects; they are parts of various heterogeneous systems and form intricate webs’

(Semadeni 2008, 9).
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(C1) I [ U
(C2) (Vi) [i [ U ? i Acc i]

(C3) (Vi) [i [ U ? I Acc i]

(C4) (Vi)(Vj)(Vk)[i [ U ^ j [ U ^ k [ U ? (i Acc j ^ j Acc k ? i Acc k)]

(C5) (Vi) (Vj)[i [ U ^ j [ U ? (i Acc j ? (Vx)(Ay)Corj(i[x]) = j[y])]

(C6) (Vi) (Vj)[i [ U ^ j [ U ? (*i Acc j ? (Vx)Corj(i[x]) = j[0])]

The distinguished axis I consists of numerals: one, two, three, etc. Its elements are

classical numerals. In various languages or codes they are expressed by different

words or signs. This axis is a tool for counting various indexed numerosities. When

the mind counts sweets in a box, it maps numerals from the distinguished axis into

the axis of sweets. In this way, the indexed number 2s is the result of mapping the

numeral two from the axis I into the second point (moment) of the axis of sweets.

Condition (C3) expresses the idea that every axis of the set U is accessible from the

axis I. This means that each axis belonging to U can be counted with numerals from

the axis I. Conditions (C2) and (C4) put the properties of reflexivity and transitivity

on the relation of accessibility. Condition (C5) establishes the connection between

the relation of accessibility and the function of correlation. If an axis is accessible

from another axis, any number of the axis which is an argument of the relation of

accessibility possesses its counterpart on the accessible axis. Condition (C6) asserts

that if some axis is not accessible from another axis, then for each number from the

axis on the input, its counterpart on the axis on the output is zero. For instance, the

counterpart of the number two-appleness on the axis of animals may be zero-

animalness in some cognitive arithmetic representations. It is obvious that in some

arithmetic representational structures, two-appleness may be correlated to one-

animalness (for example, in story-tasks where every animal eats two apples for

breakfast). These correlations are expressed by conventional rules or some empirical

postulates which constitute our common knowledge. These rules or postulates may

take various shapes: one car means four persons, one hand means five fingers, one
woman is worth of four oxen (Homer’s example from Iliad). The accessibility

relations holding between axes in any ACR-structure are determined by such

correlations. This means that the settlement of the accessibility relation in a given

ACR-structure underlying a given story-task is mediated by our common

knowledge.

ACR-structures may satisfy additional conditions as well. Some of these

facultative conditions may establish the number of axes in a given ACR-structure.

The process of generating an ACR-structure comprises: (1) the acquisition of the

linguistic line of numerals I, (2) the constitution of appropriate axes in the mind, (3)

the settlement of the relation of accessibility between axes and, finally, (4) the

construction of functions of correlations for indexed numbers from these axes.

Consider the first story-task analysed above. Its corresponding ACR-structure

takes the following shape:\INA, U, I, Acc, COR[, where (1) U = {I, a}, (2) (Vx)

Cora(I[x]) = xa. Hence, the arithmetic cognitive representation needed to solve the

first task is the cluster of two axes: the linguistic line of numerals and the axis of

apples. The first stage in solving the task is the derivation of the representational

structure with a numerical variable from the ACR-structure: (1) 1a ?a 2a = xa. The
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subsequent stage consists in retrieving from memory the fact: (2) (Vi) 1i ?i 2i = 3i.

Substituting the variable i in (2) with the constant a, the mind receives the result: (3)

1a ?a 2a = 3a

Solving the second story-task, the mind generates an ACR-structure with four

axes: U = {I, p, c, b}. It establishes the relation of accessibility by virtue of the

empirical knowledge: (1) p Acc b, (2) c Acc b (because parrots and canaries are

birds). Subsequently, the mind construes, on the basis of his/her common

knowledge, one function of correlation Corb in accordance with the following

pattern: (3) (Vx) Corb(p[x]) = xb, (4) (Vx) Corb(c[x]) = xb. In the first stage of

solving the task, the mind generates from the ACR-structure a representational

structure with a numerical variable: (5) 1p ?b 2c = xb. In the succeeding step, the

mind applies to (5) the third condition from the definition of addition (DF ?k). In

this way, the structure (5) is transformed into the structure: (6) Corb(p[1]) ?b

Corb(c[2]) = xb. By virtue of (1), (3) and (2), (4), the mind derives from (6) the

structure: (7) 1b ?b 2b = xb. Finally, by retrieving from memory the fact: (8) (Vi) 1i

?i 2i = 3i, (7) is transformed into the ultimate result: 1b ?b 2b = 3b. In the case of

the second task, the mind does not operate upon set theoretic categorial structures.

Cognitive set theoretic competence is not required for the solution of the second

task.

The third story-task motivates the mind to generate an ACR-structure with five

axes: U = {I, p, c, r, b}. In this structure, the relation of accessibility is settled in

the following way: (1) p Acc b, (2) c Acc b, (3)*r Acc b. The function of

correlation is construed by the mind as in the second task: (4) (Vx) Corb(p[x]) = xb,

(5) (Vx) Corb(c[x]) = xb. In the next step, the mind generates, on the basis of the

ACR-structure, a representational structure which takes the form: (6) (1p ?b 2c) ?b

2r = xb. By the use of (1), (4) and (2), (5), the mind infers from (6) the structure: (7)

(1b ?b 2b) ?b 2r = xb. The succeeding step consists in applying (3) together with

condition (C6) to structure (7). In this way, the mind derives: (8) (1b ?b 2b) ?b

0b = xb. By retrieving from the memory the appropriate arithmetical fact, the mind

deduces: (9) 3b ?b 0b = xb. In the final stage of solving the task, by retrieving from

memory the fact that three plus zero is three, the mind derives: (10) 3b ?b 0b = 3b.

In comparison with the classical model which attempts to explain children’s ability

to effectively solve the analysed task, the presented model of indexed natural

numbers shortens the algorithmic time needed to solve the task. The above-

reconstructed proof of the solution of the third task shows that the algorithmic time,

being represented by proof-steps, is rather long. Additionally, the time needed to

retrieve set theoretic operational knowledge must also prolong the process of

solving the task. This conclusion, however, is incompatible with the fact that

standard seven-year-old children usually solve the task very fast. Hence, in

comparison with the classical model, the model of indexed numbers offers a better

explanation of the length of algorithmic processing time needed for the mind to

supply the solution of the task.

The ACR-structure for the fourth task comprises four axes: U = {I, a, l, s}.

The relation of accessibility is established only in accordance with condition (C3).

Furthermore, there hold the following relations: (1) ~a Acc s, (2) ~l Acc s (because

neither apples nor limes are sweets). In the subsequent step, the mind derives a
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representational structure of the shape: (3) 1a ?s 2l = xs. By virtue of (1), (2) and

condition (C6), the mind transforms (3) into: (4) 0s ?s 0s = xs. By retrieving from

memory the fact that zero plus zero is zero, the mind gives the solution: (5) 0s ?s

0s = 0s. The presented model, contrary to the classical model, excludes the

correctness of one of the two alternative solutions discussed above, that is, the one

according to which the task is not decidable. This divergence may be easily

explained. The notions of the solvability and unsolvability of arithmetical tasks are

acquired by the mind by virtue of very sophisticated learning processes. Hence, only

outstanding children with special mathematical skills are able to give the result that

the task is unsolvable. In this case, it may be assumed that they are using a strategy

based on set theory to solve the task. Normal children, however, give the solution

for the fourth task that John has got zero sweets. The time needed to supply the

solution is relatively short for this task. The classical model predicts that this time

should be relatively long because of the number of proof steps required to achieve

the solution.

5 Concluding Notes

The present paper fulfils three main aims. First, it presents a formal model of the

arithmetic competence acquired by children in the process of early school

education. This model explains arithmetic skills in a quite different way than the

classical model based on Peano’s arithmetic and set theory. The novelty of the

proposed approach is the use of the arithmetic of indexed natural numbers, which is

a generalization of Peano’s arithmetic. In this way, the paper fulfils its second aim to

present some arithmetic theory which describes the peculiar structure of numbers.

Peano’s natural numbers may be defined as special cases of indexed natural

numbers. This takes place when the cluster of number axes consists of exactly one

axis. The third aim has been to display the importance of the Kantian point of view

in the field of mathematics, that is, the importance of the idea of arithmetic as the

theory of time. This point may be enriched with some phenomenological insights

concerned with time-consciousness. Not only in logic is it possible to model the

formal properties of various types of time. It is also possible to do it in the

arithmetic of indexed natural numbers.

In the recent debate on the acquisition of counting abilities, the main controversy

is concerned with the role of the approximate number representations in this

process. If one assumes that children’s counting acts, in the early, pre-school stage

of their arithmetical development, are not directed referentially towards objects

being counted, but that they are ostensive acts of naming them with numerals, then

one may interpret counting as a meta-process of counting ostensive acts of

indicating objects. In other words, when a child counts sweets on a table, he/she

counts his/her own acts of indicating sweets by the use of numerals from the verbal

number list. In this way, number axes may be comprehended as representations of

operational time-axes. The result of the child’s counting—that is, that on a table

there are four sweets—would mean that the time needed to count them is

determined by four successive acts of ostensive indication. In light of this
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neo-Kantian perspective, skills which involve counting with exact numbers are

founded upon our reflexive capacity for the exact estimation of operational lengths

of times needed for the ostensive enumeration of all elements of a given set,

whereas the number sense, understood as a competence operating upon approximate

numbers, is a cognitive ability directed intentionally towards numerosities of sets in

the experienced world. Approximate numbers are properties of experienced sets

comprised by the world, whereas exact numbers are properties of operational times

needed for the execution of the complete enumeration of a set. This difference

justifies the conjecture that representations of exact numbers cannot be derived from

representations of approximate numbers.

Open Access This article is distributed under the terms of the Creative Commons Attribution

Noncommercial License which permits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.
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