Skip to main content
Log in

Classical variational derivation and physical interpretation of Dirac's equation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A simple random walk model has been shown by Gaveauet al. to give rise to the Klein-Gordon equation under analytic continuation. This absolutely most probable path implies that the components of the Dirac wave function have a common phase; the influence of spin on the motion is neglected. There is a nonclassical path of relative maximum likelihood which satisfies the constraint that the probability density coincide with the quantum mechanical definition. In three space dimensions, and in the presence of electromagnetic interaction, the Lagrangian for this optimal, nonclassical path coincides with the Lagrangian of the Dirac particle. The nonrelativistic, or diffusion, limit is shown to be a formal consequence of Einstein's dynamical equilibrium condition; the continuity equation reduces to the same diffusion equation derived from Schrödinger's equation. The relativistic, massless limit, which would describe a neutrino, is comparable (in the sense of analytic continuation) to a nonviscous liquid whose molecules possess internal degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965), problem 2–6, pp. 34–36.

    Google Scholar 

  2. B. Gaveau, T. Jacobson, M. Kac, and L. S. Schulman,Phys. Rev. Lett. 53, 419 (1984).

    Google Scholar 

  3. M. Kac,Rocky Mountain J. Math. 4, 497 (1974).

    Google Scholar 

  4. L. de Broglie,Non-Linear Wave Mechanics: A Causal Interpretation (Elsevier, Amsterdam, 1960), p. 205.

    Google Scholar 

  5. H. A. Gersch,Int. J. Theor. Phys. 20, 491 (1981); B. H. Lavenda,Prog. Theor. Phys. 75, 243 (1986).

    Google Scholar 

  6. R. Kikuchi,Phys. Rev. 124, 1682 (1961).

    Google Scholar 

  7. R. Kikuchi and P. Gottlieb,Phys. Rev. 124, 1691 (1961).

    Google Scholar 

  8. J. J. Sakurai,Advanced Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1967), p. 169.

    Google Scholar 

  9. B. H. Lavenda and C. Cardella,J. Phys. A: Math. Gen. 19, 395 (1986).

    Google Scholar 

  10. B. H. Lavenda,Nonequilibrium Statistical Thermodynamics (Wiley-Interscience, Chichester, 1985), Sections 1.4 and 7.4.

    Google Scholar 

  11. J. D. Jackson,Classical Electrodynamics (Wiley, New York, 1962), p. 671.

    Google Scholar 

  12. E. Nelson,Quantum Fluctuations (Princeton University Press, Princeton, 1985), p. 32. A critical assessment can be found in B. H. Lavenda and E. Santamato,Int. J. Theor. Phys. 23, 585 (1984).

    Google Scholar 

  13. A. Einstein,Investigations on the theory of Brownian movement (Dover, New York, 1956), p. 73ff.

    Google Scholar 

  14. J. Frenkel,Kinetic theory of Liquids (Ocford, London, 1946), Chapter U, Section 7.

    Google Scholar 

  15. S. R. de Groot and P. Mazur,Non-equilibrium Thermodynamics (North-Holland, Amsterdam, 1962), p. 305.

    Google Scholar 

  16. L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon, Oxford, 1959), p. 247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Alfonso Maria Liquori on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavenda, B.H. Classical variational derivation and physical interpretation of Dirac's equation. Found Phys 17, 221–237 (1987). https://doi.org/10.1007/BF00733091

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00733091

Keywords

Navigation