Skip to main content

Advertisement

Log in

The Wave Function Collapse as an Effect of Field Quantization

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

It is pointed out that ordinary quantum mechanics as a classical field theory cannot account for the wave function collapse if it is not seen within the framework of field quantization. That is needed to understand the particle structure of matter during wave function evolution and to explain the collapse as symmetry breakdown by detection. The decay of a two-particle bound s state and the Stern-Gerlach experiment serve as examples. The absence of the nonlocality problem in Bohm’s version of the EPR arrangement favours the approach described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dirac, P.A.M.: The development of quantum mechanics. In: Contributi del Centro Linceo Interdisciplinare, Roma, Anno CCCLXXI, n. 4 (1974)

  2. Hiley, B.J.: Foundations of quantum mechanics. Contemp. Phys. 18, 411–414 (1977)

    Article  ADS  Google Scholar 

  3. Holland, P.R.: The Quantum Theory of Motion: An Account of the De Broglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  4. Everett, H.: Rev. Mod. Phys. 29, 454 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  5. Hellwig, K.E., Kraus, K.: Formal description of measurements in local quantum field theory. Phys. Rev. D 1, 566–571 (1970)

    Article  ADS  Google Scholar 

  6. Aharonov, Y., Albert, D.Z.: States and observables in relativistic quantum field theories. Phys. Rev. D 21, 3316–3324 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  7. Aharonov, Y., Albert, D.Z.: Is the usual notation of time evolution adequate for quantum-mechanical systems? II. Relativistic considerations. Phys. Rev. D 29, 228–34 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  8. Finkelstein, J.: Found. Phys. Lett. 5, 383 (1992)

    Article  MathSciNet  Google Scholar 

  9. Finkelstein, J.: Phys. Lett. A 188, 117 (1994)

    Article  ADS  Google Scholar 

  10. Cramer, J.G.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647–88 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  11. Namiki, M., Pascazio, S.: Wave-function collapse, decoherence and related interference phenomena. Report of Science and Engineering Research Laboratory No. 92-8, Waseda University, Tokyo (1992)

  12. Ferrero, M.: The information interpretation and the conceptual problems of quantum mechanics. Found. Phys. 33, 665–676 (2003)

    Article  MathSciNet  Google Scholar 

  13. Mermin, N.D.: The Ithaka interpretation of quantum mechanics. Pramana 51, 549 (1998)

    Article  ADS  Google Scholar 

  14. Primas, H.: Chemistry, Quantum Mechanics and Reductionism. Springer, Berlin (1983)

    Google Scholar 

  15. Omnès, R.: The Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  16. Rauch, H.: More quantum information due to postselection in neutron interferometry. In: Fundamental Problems in Quantum Theory, vol. 755, p. 284. Annals of the New York Academy of Sciences (1994)

  17. Fick, E.: Einführung in die Grundlagen der Quantentheorie. Geest & Portig K.-G., Leipzig, (1968)

    MATH  Google Scholar 

  18. Schweber, S., Bethe, H.A., de Hoffmann, F.: Mesons and Fields, vol. 1, p. 150. Row, Peterson, and White Plains, Evanston, New York (1956)

    Google Scholar 

  19. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  20. Bohm, D.: Quantum Theory, p. 614. Prentice Hall, Englewood Cliffs (1951)

    Google Scholar 

  21. Freedmann, S.J., Clauser, J.F.: Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938 (1972)

    Article  ADS  Google Scholar 

  22. Einstein, A., Podolski, B., Rosen, N.: Can quantum mechanical description of physical reality be complete? Phys. Rev. 47, 777–80 (1935)

    Article  MATH  ADS  Google Scholar 

  23. de Muynck, W.M.: Towards a neo-Copenhagen interpretation of quantum mechanics. Found. Phys. 34, 717–70 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Bloch, I.: Some relativistic oddities in the quantum theory of observation. Phys. Rev. 156, 1377 (1967)

    Article  ADS  Google Scholar 

  25. Griffiths, R.B.: Probabilities and quantum reality: Are there correlata? Found. Phys. 33, 1423-59

  26. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–84 (1969)

    Article  ADS  Google Scholar 

  27. Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526–35 (1974)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lewin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewin, K. The Wave Function Collapse as an Effect of Field Quantization. Found Phys 39, 1145–1160 (2009). https://doi.org/10.1007/s10701-009-9330-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9330-9

Keywords

Navigation