Skip to main content

Advertisement

Log in

Current Agricultural Practices Threaten Future Global Food Production

  • Articles
  • Published:
Journal of Agricultural and Environmental Ethics Aims and scope Submit manuscript

Abstract

In future decades, food demand for an increased population with elevated standards of living poses a huge challenge, particularly in the sense of the environmental impacts of agricultural systems. We have analyzed agricultural data from the past 50 years, and found that the current agricultural practices will have negative effects on global food production: total agricultural area has decreased since 2000, fertilizer and pesticide consumption increased while their efficiency decreased, and available water sources are already being used for irrigation. Expansion of biofuel production, cultivation limitations of genetically modified organisms, and the trend of increasing living standards will all intensify the risks of a global food crisis in the coming decades. Crop yield and environmental protection will then have to be traded off if there are no feasible solutions at country or regional scales, and it is crucial for agricultural sustainability to increase crop yields and simultaneously decrease environmental impacts of agriculture intensification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Athukorala, W., & Wilson, C. (2012). Groundwater overuse and farm-level technical inefficiency: Evidence from Sri Lanka. Hydrogeology Journal, 20, 893–905.

    Article  Google Scholar 

  • Beddington, J. R., Asaduzzaman, M., Clark, M. E., Bremauntz, A. F., Guillou, M. D., Howlett, D. J. B., et al. (2012). What next for agriculture after Durban. Science, 335, 289–290.

    Article  Google Scholar 

  • Butler, D. (2012). Rat study sparks GM furore. Nature, 489, 484.

    Article  Google Scholar 

  • Callicot, J. B. (1999). Beyond the land ethic: More essays in environmental philosophy (p. 437). New York: State University of New York Press.

    Google Scholar 

  • Cheng, H. G., Pu, X., Chen, Y. T., Hao, F. H., & Dong, L. M. (2014). Characterization of phosphorus species and modeling for its organic forms in eutrophic shallow lake sediments, North China. Frontiers of Environmental Science and Engineering, 8, 905–921.

    Article  Google Scholar 

  • Del Grosso, S. J., & Cavigelli, M. A. (2012). Climate stabilization wedges revisited: Can agricultural production and greenhouse-gas reduction goals be accomplished? Frontiers in Ecology and the Environment, 10, 571–578.

    Article  Google Scholar 

  • Esquinas-Alcázar, J. (2005). Protecting crop genetic diversity for food security: Political, ethical and technical challenges. Nature Reviews Genetics, 6, 946–953.

    Article  Google Scholar 

  • FAO. (2010). The state of food insecurity in the world: Addressing food insecurity in protracted crises. Rome: Food and Agriculture Organization of the United Nations (FAO).

    Google Scholar 

  • FAO (2012). Food and Agriculture Organization of the United nations. FAOSTAT homepage. http://faostat3.fao.org/home

  • FAPRI (2011). Overview of the FAPRI-ISU 2011 World agricultural outlook. Food and Agricultural Policy Research Institute. http://www.fapri.iastate.edu/outlook/2011/

  • Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt. Science, 319, 1235–1238.

    Article  Google Scholar 

  • Foley, J. A. (2005). Global consequences of land use. Science, 309, 570–574.

    Article  Google Scholar 

  • Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., et al. (2011). Solutions for a cultivated planet. Nature, 478, 337–342.

    Article  Google Scholar 

  • Funk, C. C., & Brown, M. E. (2009). Declining global per capita agricultural production and warming oceans threaten food security. Food Security, 1, 271–289.

    Article  Google Scholar 

  • Gamborg, C., Millar, K., Shortall, O., & Sandøe, P. (2011). Bioenergy and land use: Framing the ethical debate. Journal of Agricultural and Environmental Ethics, 25, 909–925.

    Article  Google Scholar 

  • Gelfand, I., Sahajpal, R., Zhang, X., Izaurralde, R. C., Gross, K. L., & Robertson, G. P. (2013). Sustainable bioenergy production from marginal lands in the US Midwest. Nature, 493, 514–517.

    Article  Google Scholar 

  • Gill, R. J., Ramos-Rodriguez, O., & Raine, N. E. (2012). Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature, 491, 105–108.

    Article  Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: The challenge of feeding 9 billion people. Science, 327, 812–818.

    Article  Google Scholar 

  • Goldman, L. R., & Koduru, S. (2000). Chemicals in the environment and developmental toxicity to children: A public health and policy perspective. Environmental Health Perspectives, 108, 443–448.

    Article  Google Scholar 

  • Goodman, M. K. (2004). Reading fair trade: Political ecological imaginary and the moral economy of fair trade foods. Political Geography, 23, 891–915.

    Article  Google Scholar 

  • Hanjra, M. A., & Qureshi, M. E. (2010). Global water crisis and future food security in an era of climate change. Food Policy, 35, 365–377.

    Article  Google Scholar 

  • Heckel, D. G. (2012). Insecticide resistance after silent spring. Science, 337, 1612–1614.

    Article  Google Scholar 

  • Henry, M., Beguin, M., Requier, F., Rollin, O., Odoux, J.-F., Aupinel, P., et al. (2012). A common pesticide decreases foraging success and survival in honey bees. Science, 336, 348–350.

    Article  Google Scholar 

  • IFA (2012). Internatinal Fertilizer Industry Association. IFADATA homepage. http://www.fertilizer.org/ifa/ifadata/search

  • James, C. (2012). Global status of commercialized biotech/GM crops: 2012. Ithaca, NY: ISAAA Brief. 44.

    Google Scholar 

  • Khan, M. A., & Shah, S. A. A. (2010). Agricultural development and associated environmental and ethical issues in South Asia. Journal of Agricultural and Environmental Ethics, 24, 629–644.

    Article  Google Scholar 

  • Lin, M., & Huybers, P. (2012). Reckoning wheat yield trends. Environmental Research Letters, 7, 024016.

    Article  Google Scholar 

  • Liu, Y., Liu, F., Pan, X., & Li, J. (2012). Protecting the environment and public health from pesticides. Environmental Science and Technology, 46, 5658–5659.

    Article  Google Scholar 

  • Liu, Y., Pan, X. and Li, J. (2014). A 1961–2010 record of fertilizer use, pesticide application and cereal yields: A review. Agronomy for Sustainable Development. doi:10.1007/s13593-014-0259-9

  • Liu, Y., Wei, W., Ma, K., & Darmency, H. (2010a). Backcrosses to Brassica napus of hybrids between B. juncea and B. napus as a source of herbicide-resistant volunteer-like feral populations. Plant Science, 179, 459–465.

    Article  Google Scholar 

  • Liu, Y. B., Wei, W., Ma, K. P., Li, J. S., Liang, Y. Y., & Darmency, H. (2013a). Consequences of gene flow between oilseed rape (Brassica napus) and its relatives. Plant Science, 211, 42–51.

    Article  Google Scholar 

  • Liu, Y., Wen, C., & Liu, X. (2013b). China’s food security soiled by contamination. Science, 339, 1382–1383.

    Article  Google Scholar 

  • Liu, J., You, L., Amini, M., Obersteiner, M., Herrero, M., Zehnder, A. J. B., et al. (2010b). A high-resolution assessment on global nitrogen flows in cropland. Proceedings of the National Academy of Sciences, USA, 107, 8035–8040.

    Article  Google Scholar 

  • Lobell, D. B., Cassman, K. G., & Field, C. B. (2009). Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environment and Resources, 34, 179–204.

    Article  Google Scholar 

  • Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333, 616–620.

    Article  Google Scholar 

  • MacDonald, G. K., Bennett, E. M., Potter, P. A., & Ramankutty, N. (2011). From the cover: Agronomic phosphorus imbalances across the world’s croplands. Proceedings of the National Academy of Sciences, 108, 3086–3091.

    Article  Google Scholar 

  • Matson, P. A., Parton, W. J., Power, A. G., & Swift, M. (1997). Agricultural intensification and ecosystem properties. Science, 277, 504–509.

    Article  Google Scholar 

  • Matson, P. A., & Vitousek, P. M. (2006). Agricultural intensification: Will land spared from farming be land spared for nature? Conservation Biology, 20, 709–710.

    Article  Google Scholar 

  • Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature, 490, 254–257.

    Article  Google Scholar 

  • Peltonen-Sainio, P., Jauhiainen, L., & Laurila, I. P. (2009). Cereal yield trends in northern European conditions: Changes in yield potential and its realization. Field Crops Research, 110, 85–90.

    Article  Google Scholar 

  • Pfister, S., Bayer, P., Koehler, A., & Hellweg, S. (2011). Environmental impacts of water use in global crop production: Hotspots and trade-offs with land use. Environmental Science and Technology, 45, 5761–5768.

    Article  Google Scholar 

  • Pingali, P. L. (2012). Green revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences, USA, 109, 12302–12308.

    Article  Google Scholar 

  • Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insuffient to double global crop production by 2050. PLoS One, 8, e66428.

    Article  Google Scholar 

  • Redclift, M., & Sage, C. (1998). Global environmental change and global inequality: North/South perspectives. International Sociology, 13, 499–516.

    Article  Google Scholar 

  • Rodrigues, J. L. M., Pellizari, V. H., Mueller, R., Baek, K., Jesus, Ed C, Paula, F. S., et al. (2013). Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proceedings of the National Academy of Sciences, 110, 988–993.

    Article  Google Scholar 

  • Roy, R., Chan, N. W., & Rainis, R. (2013). Rice farming sustainability assessment in Bangladesh. Sustainability Science,. doi:10.1007/s11625-11013-10234-11624.

    Google Scholar 

  • Séralini, G.-E., Clair, E., Mesnage, R., Gress, S., Defarge, N., Malatesta, M., et al. (2012). Long term toxicity of Roundup herbicide and a Roundup-tolerant genetically modified maize. Food and Chemical Toxicology, 50, 4221–4231.

    Article  Google Scholar 

  • Sun, B., Zhang, L. X., Yang, L. Z., Zhang, F. S., Norse, D., & Zhu, Z. L. (2012). Agricultural non-point source pollution in China: Causes and mitigation measures. Ambio, 41, 370–379.

    Article  Google Scholar 

  • Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327, 818–822.

    Article  Google Scholar 

  • Tilman, D. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 281–284.

    Article  Google Scholar 

  • Tilman, D., Balzer, C., Hillc, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, USA, 108, 20260–20264.

    Article  Google Scholar 

  • Vitousek, P. M., Naylor, R., Crews, T., David, M. B., Drinkwater, L. E., Holland, E., et al. (2009). Nutrient imbalances in agricultural development. Science, 324, 1519–1520.

    Article  Google Scholar 

  • Whitehorn, P. R., O’Connor, S., Wackers, F. L., & Goulson, D. (2012). Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science, 336, 351–352.

    Article  Google Scholar 

  • Xie, J., Zhang, X. Y., Xu, Z. W., Yuan, G. F., Tang, X. Z., Sun, X. M., et al. (2014). Total phosphorus concentrations in surface water of typical agro- and forest ecosystems in China, 2004–2010. Frontiers of Environmental Science and Engineering, 8, 561–569.

    Article  Google Scholar 

  • Zhang, M. G., Zhou, Z. K., Chen, W. Y., Ferry Slik, J. W., Cannon, C. H., & Raes, N. (2012). Using species distribution modeling to improve conservation and land use planning of Yunnan, China. Biological Conservation, 153, 257–264.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Environmental Protection Public Welfare Science and Technology Research Program of China (Grant 201309038), the Special Program for New Transgenic Variety Breeding of the Ministry of Science and Technology, China (Grant 2012ZX08011002), and one project of the Natural Science Foundation of China (Grant 31200288).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongbo Liu or Junsheng Li.

Additional information

Yongbo Liu and Xubin Pan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Pan, X. & Li, J. Current Agricultural Practices Threaten Future Global Food Production. J Agric Environ Ethics 28, 203–216 (2015). https://doi.org/10.1007/s10806-014-9527-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10806-014-9527-6

Keywords

Navigation