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A Decidable Temporal Logic
of Parallelism

MARK REYNOLDS

Abstract In this paper we shall introduce a simple temporal logic suitable for
reasoning about the temporal aspects of parallel universes, parallel processes,
distributed systems, or multiple agents. We will use a variant of the mosaic
method to prove decidability of this logic. We also show that the logic does
not have the finite model property. This shows that the mosaic method is some-
times a stronger way of establishing decidability.

1 Introduction The logic, FP♦, investigated here is not new. It has been men-
tioned in Thomason [21], for example, and is one of the simplest ways of combining
temporal and modal operators. It is a propositional logic with formulas built using
the two Priorean temporal connectives F and P along with a modal operator ♦. The
semantics are evaluated on a rectangular frame consisting of the cross product of a
linear order and a nonempty set. The temporal and modal operators act in a perpen-
dicular fashion: thus we have a simple combination Priorean temporal logic of linear
time and an S5 modal logic.

In computer science applications, ordinary one dimensional temporal logic is
itself widely recognized as a convenient formalism for representing and reasoning
about the behavior of complex and reactive systems. However, adding the modal di-
mension really does add another dimension to the expressibility. The modality can
be used to represent reference to parallel universes or to other processes or agents in
a complex system. The increased expressiveness is apparent when we realize that we
can describe systems of unbounded or infinite size.

Many similar logics have been studied. They include branching time logics, log-
ics of knowledge and belief, other logics of complex systems, and modal versions of
cylindric algebras. We survey some in Section 3. FP♦ turns out to be very closely
related to the simplest versions of many of these logics. However, the combination of
a past and future temporal logic over general linear time with an S5 modal logic does
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not seem to have been studied. Most published work here concerns logics with lan-
guages restricted to the future temporal modalities and semantics restricted to natural
numbers time. Decidability results for some of these logics exist.

One of the interesting contributions of this paper is the method for the decidabil-
ity result. From its beginnings in algebraic logic in Németi [15], this mosaic method
has grown to be increasingly used in proving decidability and completeness for vari-
ous multimodal logics. It is well explained in Venema and Marx [23] where it is used
to prove completeness and decidability of the logic LCn—a generalization of a modal
version of first-order logic. This paper (along with “Temporal mosaics,” forthcom-
ing by Marx, Mikulas, and Reynolds) pioneers the use of the method in the context
of temporal logic.

Often, completeness and decidability proofs proceed in a step-by-step manner
adding one point at a time to eventually build a model of a satisfiable formula. In the
mosaic method we instead try to find a set of small pieces of a model which satisfies
a certain closure property. This will be enough to guarantee that the small pieces can
be put together to form a model. The actual putting together can either be done by a
very simple step-by-step operation (as in [23]) or (as shown recently in Hodkinson et
al. [11]) we might be able to use new techniques (of Herwig [10] and Hrushovski [12])
to immediately find the model. In using the mosaic method to give a decidability
proof we need to define mosaics appropriate for the logic and define closure properties
(dependent on a given formula) for a finite set of mosaics so that the existence of such
a set of a certain size will be equivalent to the existence of a model for the formula.

In order to briefly describe the method used in this paper we will picture our
rectangular frames with the linear order arranged vertically—greater corresponding
to above—and the nonempty set arranged horizontally. Worlds in models correspond
to ordered pairs. Since we are interested in the satisfiability of a particular formula we
will equate each of these worlds with a set of subformulas of this formula—namely,
those true in that world. The mosaics we use here correspond to slices of a rectangular
model made along a pair of time points—that is, the slices are horizontal. The slices
produce pairs of worlds: one on the bottom slice, the other above it on the top slice.
The possibly infinite number of pairs of worlds inhabiting each mosaic are factored
out by an equivalence based on the local truth of the subformulas of the original for-
mula. Thus there are only a finite number of equivalence classes of pairs. A particular
mosaic should thus be expected to exhibit various sensible “coherency” conditions.
For example, if Gα, “always in the future α”, is in the bottom world of a pair then
we expect α to be in the top world of the pair. There are corresponding coherency
conditions for the past modality and the perpendicular ♦ modality.

Notice that it may be the case that Fα is in the top world of a pair in the mosaic.
In this case we say that the mosaic has a defect. There are four types of defect alto-
gether. If we wanted to build a model for our formula then we would hope that we
could use other mosaics to put on top of ones with such a defect to cure the defect—
that is, provide a witness for α. The decidability method will thus concentrate on
finding what we will call a saturated set of mosaics. Such a set should contain all that
is needed to cure any defects of mosaics within itself. The proof consists of showing
that the existence of such a saturated set is equivalent to the satisfiability of the origi-
nal formula. We also must show that there is a finite bound on the number of mosaics
needed to make a saturated set.
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In the long version of this paper [18], we use an IRR style rule (cf. Gabbay, Hod-
kinson, and Reynolds [8]) to give a straight forward axiomatization of the logic. With
such an axiomatization available, it is relevant to ask whether a simple decision proce-
dure can be presented for the logic based on the finite model property. In Section 9,
we show that the logic FP♦ is an interesting candidate for a decidability proof via
the mosaic method because, the logic does not have the finite model property. This
shows that the finite set of mosaics with the closure property is not just a finite model
in disguise. Finally we conclude with some related open problems.

2 The logic FP♦ Formulas are constructed from propositional atoms (from L say)
and � using ¬, ∧, and the three modalities ♦, F, and P. F and P will act like the
usual mutually dual Priorean temporal connectives. The other modality ♦ will act in
a perpendicular fashion as we will see. We use the usual abbreviations: ⊥, ∨, −→,
G, H, �. Note that �α is thus ¬♦¬α.

Semantics is over rectangular structures, that is, the frame is (U, T,<) for some
nonempty set U and some nonempty irreflexive linear order (T,<). Valuations of the
atoms are made at pairs (u, t). Truth in a structure M = (U, T,<, g) under valuation
g : U × T −→ 2L is defined inductively as follows:

M , u, t |= p iff p ∈ g(u, t);
M , u, t |= �;
M , u, t |= α ∧ β iff M , u, t |= α and M , u, t |= β;
M , u, t |= ¬α iff M , u, t �|= α;
M , u, t |= Fα iff there is s ∈ T such that t < s and M , u, s |= α;
M , u, t |= Pα iff there is s ∈ T such that s < t and M , u, s |= α;
M , u, t |= ♦α iff there is v ∈ U such that M , v, t |= α.

We say that (U, T,<) is a brief structure if and only if T is a singleton (so < is empty).
The simple modal fragment involving ♦ is made a lot more powerful by its com-

bination with the temporal logic. For example, we can say that there are an infinite
number of parallel time-lines:

F� ∧ GF� ∧ G♦(q ∧ H¬q).
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The only rectangular models of this formula are infinite. In Section 9, we will con-
sider whether this implies that the logic lacks the finite model property.

3 Related logics FP♦ logic is a restriction of the Synchronized Ockhamist
branching-time logic of Di Maio and Zanardo [3]. The semantical structures (called
T × W frames in [21]) for this logic involve the cross product of a linear order (T,<)

and a set W along with equivalence relations ∼t on W for each t ∈ T . The equiva-
lence relations must satisfy the property that w ∼t w′ and t′ < t implies w ∼t′ w′.
The order (T,<) represents time and the elements of the set W represent alternative
histories. The ∼t-class containing w can be used to represent the histories which are
possible from the point of view of the world (t,w). Thus the modality ♦2 defined by

(T,<, W, {∼t}, g), t,w |= ♦2α iff

∃w′ ∈ W, such that w ∼t w′ and (T,<, W, {∼t}, g), t,w′ |= α

represents the idea of “at this time in some history which is currently considered pos-
sible”. The modality ♦1 defined by

(T,<, W, {∼t}, g), t,w |= ♦1α iff

∃w′ ∈ W, such that (T,<, W, {∼t}, g), t,w′ |= α

represents the idea of “at this time in some history”. It is this latter modality which ex-
tends the nontemporal modality in the logic FP♦. Logics very similar to the synchro-
nized logic form bases for logics of agency in Belnap and Perloff [1] and causation
in von Kutschera [24]. There are axiomatizations of such logic in von Kutschera [25]
and Di Maio and Zanardo [4]. It seems to be an open problem whether this logic is
decidable.

Logics of historical necessity or Ockhamist logics are closely related examples
of a combined logic. They are not neatly two-dimensional logics but we do have a
modal logic of possibility in some sense orthogonal to a linear temporal logic. These
logics are obtained by removing the ♦1 modality from the synchronized logic above.
They are described in Burgess [2] while there are axiomatizations in Zanardo [26],
Zanardo [27], and [8]. A special case of this logic is proved decidable in Gurevich
and Shelah [9].

Many combinations of time and other modalities arise from formal investiga-
tions into how knowledge (or belief) changes over time. These logics are usually
designed for reasoning about systems of multiple agents. See Fagin et al. [5] for a
comprehensive survey. A temporal-epistemic logic for n agents will use n knowl-
edge modalities. Thus the versions which are of relevance to us here are simple
ones, formalizing the changes in knowledge of one lone agent who knows about the
world and her or his own knowledge. S5 is commonly taken to be the nontempo-
ral logic of knowledge appropriate for one agent. So we can formalize the semantics
of the temporal-epistemic logic using a two-dimensional frame very similar in gen-
eral form to those for synchronized historical necessity. However, the accessibility
relation for the knowledge modality does not have to be restricted to being between
worlds (t,w) and (t′,w′) with t = t′. In the case with time being the natural num-
bers these logics are well studied. In [5] a logic is introduced which is like FP♦ but
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involves tomorrow and until temporal operators, has a natural numbers frame, has
an EXPSPACE-complete decision procedure, and is given a complete axiomatization.
This is a temporal-epistemic logic of one agent who doesn’t forget, doesn’t learn and
who knows the time.

We have mentioned thatFP♦ logic has applications to systems of parallel pro-
cesses. There has been some work in developing two-dimensional logic for such ap-
plications. In Reif and Sistla [17], for example, we find a logic combining temporal
and spatial modalities. Once again the temporal dimension is the natural numbers
and we have the other dimension based on a set of processes. However, there is a set
of names for links which may or may not connect one process to another. The lan-
guage uses until in the temporal direction but has a spatial modality for each link as
well as one for the transitive closure of all links. This leads to a highly undecidable,
unaxiomatizable logic. In Sistla and German [20], on the other hand, we have a sim-
ilar logic but without the linking modalities. There is just the one existential spatial
modality as in FP♦. With until as the temporal connective and the natural numbers
as time, deciding validity in this logic is stated to be EXPSPACE-complete.

There are other temporal logics in the literature with a two-dimensional flavor.
For example, there are the logics arising from general temporalizing (Finger and Gab-
bay [7]) and combining (Finger and Gabbay [6]) techniques. Temporalizing allows
the adding of a temporal logic on top of any other logic. Truth is evaluated in two-
dimensional structures but only a restricted language is available—formulas with a
horizontal modality nested inside a vertical one, say, are outlawed. Combining or
Fibring techniques, on the other hand, allow the full two-dimensional language but
also allow very complex models without commutativity of the two accessibility rela-
tions <1 and <2. Such structures are sometimes known as independent combinations
of modal logics (Thomason [22]). Such logics are used to investigate the preservation
of various logical properties under combination logics. They can also sometimes be
the only way of keeping combinations of logic decidable.

There is a wealth of two-dimensional nontemporal modal logics which have
been investigated. One of the most fruitful areas here has been the investigation of
modal versions of first-order logic and their cylindric algebra counterparts. If we look
at first-order logic with no function symbols, relations of arity only 1 or 2 and only
two variable symbols, then we can regard the existential quantifier as a modal oper-
ator and come up with a two-dimensional modal logic which is the same as that in
Segerberg [19]. In Marx [14], a similar modal logic is studied. This logic is proved
decidable and the proof is an example of the mosaic method which we now turn to.

4 Segments Suppose that ϕ is a formula. Let S be the set of subformulas of ϕ in-
cluding the single negations of nonnegated subformulas. We are interested in decid-
ing whether ϕ is satisfiable, that is, there exists valuated structure (U, T,<, g) and
u ∈ U, t ∈ T such that (U, T,<, g), u, t |= ϕ. As described in the introduction, we
will be using the mosaic method to provide the decision procedure. First we will de-
fine a mosaic—a small piece of model which we will eventually use to build whole
models. Because the pieces in this proof are supposed to correspond to whole seg-
ments across a rectangular model, we will call the pieces “segments” rather than mo-
saics.
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The idea of a segment comes from considering a pair of slices cut horizontally
across the whole of a rectangular model. Such a pair of slices gives rise to a set of
pairs of worlds: a world on the bottom slice paired with the world directly above it
on the top slice. We shall equate worlds with the set of formulas from S locally true
in that world in the sliced model and thus we have just a finite set X of pairs. We will
let µ(x) be the lower set of formulas in a pair x and ν(x) be the upper set.

We can picture a segment as follows:

� � � � � ��

������

�

Forward

in time.

x1 ... xn

µ(x1) µ(x2) ...

ν(x1) ν(x2)
... ν(xn)

µ(xn)

x2

where {x1, . . . , x2} are the parallel time lines. This leads us to the following defini-
tion.

Definition 4.1 A ϕ-segment is a triple (X, µ, ν) such that

1. X is a finite set;
2. µ, ν : X −→ 2S;
3. if µ(x) = µ(y) and ν(x) = ν(y) then x = y;
4. each µ(x) and ν(x) is a maximally Boolean consistent set;
5. if Gα ∈ µ(x) then α ∈ ν(x) and Gα ∈ ν(x);
6. if Hα ∈ ν(x) then α ∈ µ(x) and Hα ∈ µ(x);
7. if �α ∈ µ(x) then for all y ∈ X, α ∈ µ(y);
8. if �α ∈ ν(x) then for all y ∈ X, α ∈ ν(y);
9. if ♦α ∈ µ(x) then there is y ∈ X such that α ∈ µ(y);

10. if ♦α ∈ ν(x) then there is y ∈ X such that α ∈ ν(y).

Such conditions are often called coherency conditions for mosaics.
The decision procedure for satisfiability of ϕ amounts to looking for a set of seg-

ments which are sufficient so that they can be put together to build a rectangular model
of ϕ. As we have seen, the models of ϕ may all be infinite. Nevertheless, we will
show that a finite set of segments will suffice to build a model. Of course, we may
need many copies of the same segment at various stages of the construction.

The test for sufficiency of a given finite set L of segments is surprisingly simple.
In actual fact, we need only consider one segment at a time from L and make sure that
certain closely related segments are also in L. Consider a segment A = (X, µ, ν).
Suppose that Fα ∈ ν(x) for some x ∈ X. This means that if we ever use A in building
our model then there will be a point on top of the model (if A has just been placed on
top) at which Fα should be true. It is clear that at some later stage we are going to
have to place a segment on top of the partially completed model which makes α true
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at the point above ν(x). The Fα in ν(x) is called a defect in A and the process of later
placing a witness for α at the right point is called curing the defect. We will require
that a segment for curing the defect in A is also in L available for our use.

There are other sorts of defects as described in B3, B4, and B5 below. Return-
ing to consider our set L of segments, it turns out that we need only make sure that
we can cure defects in each of the segments in L using only segments from L. Such
considerations give rise to the following definition.

Definition 4.2 A saturated set of segments (SSS) for ϕ is a set L of ϕ-segments
such that

B1 there is (X, µ, ν) ∈ L, and x ∈ X such that either ϕ ∈ µ(x) or ϕ ∈ ν(x);
B2 if (X, µ, ν) ∈ L, x ∈ X and Fα ∈ ν(x) then there is (X ′, µ′, ν′) ∈ L,

ρ ⊆ X × X ′ and x′ ∈ X ′ such that

B2.1 for all y ∈ X there is y′ ∈ X ′ such that ρ(y, y′),
B2.2 for all y′ ∈ X ′ there is y ∈ X such that ρ(y, y′),
B2.3 if ρ(y, y′) then ν(y) = µ′(y′),
B2.4 ρ(x, x′),
B2.5 α ∈ ν(x′);

B3 similarly for Pα;
B4 if (X, µ, ν) ∈ L, x ∈ X, Fα ∈ µ(x), Fα �∈ ν(x) and α �∈ ν(x) then there

is (X ′, µ′, ν′) ∈ L, (X ′′, µ′′, ν′′) ∈ L, ρ ⊆ X × X ′, σ ⊆ X ′ × X ′′ and
τ ⊆ X ′′ × X, x′′ ∈ X ′′ and x′ ∈ X ′ such that

B4.1 for all y ∈ X there is y′ ∈ X ′ and y′′ ∈ X ′′ such that
ρ(y, y′), σ(y′, y′′) and τ(y′′, y),

B4.2 for all y′ ∈ X ′ there is y ∈ X and y′′ ∈ X ′′ such that
ρ(y, y′), σ(y′, y′′) and τ(y′′, y),

B4.3 for all y′′ ∈ X ′′ there is there is y′ ∈ X ′ and y ∈ X such that
ρ(y, y′), σ(y′, y′′) and τ(y′′, y),

B4.4 if ρ(y, y′) then µ(y) = µ′(y′),
B4.5 if σ(y′, y′′) then ν′(y′) = µ′′(y′′),
B4.6 if τ(y′′, y) then ν′′(y′′) = ν(y),
B4.7 ρ(x, x′),
B4.8 σ(x′, x′′),
B4.9 τ(x′′, x),
B4.10 α ∈ ν(x′);

B5 similarly for Pα.

There are several aspects of this definition that need to be explained. First, the defect
and cure considered in B4. Here we have supposed we have a segment (X, µ, ν) ∈ L
with Fα ∈ µ(x) but neither Fα nor α ∈ ν(x). When we are building a model and
we use this segment then we will have to, at a later stage, replace it by two segments
which fitted together one immediately above the other match the original. This is be-
cause there must be a witness to α in between the two slices which formed the original
segment.
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The other important aspect of curing defects is the seemingly very complicated way
in which segments fit together, one above the other. For example, in B2, we introduce
a relation ρ ⊆ X × X ′ to do the fitting or gluing together. Of course, ρ must be a total
relation (condition B2.1) and ρ must be onto (condition B2.2) so that time lines do
not end or begin at joins in our segmented model. But why do we not require that ρ

is one-to-one? This is because, it may be recalled, segments do not correspond ex-
actly to pairs of slices in a model but to sets of pairs of worlds at slices factored out
by equivalence in truth of formulas from S. It so happens that sometimes during con-
struction the set of time-lines constructed by some stage needs to suffer a splitting of
two (or more) equivalent lines in order to continue each of them in a different way.
This is why our gluing allows forking in one direction or another.

Here is an example of the result of gluing segments together where the lower
case letters refer to sets of formulas which label the points of the segments:
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5 Soundness of the saturation condition The main result we prove in the next few
sections is that the existence of a rectangular model for ϕ is almost equivalent to the
existence of a saturated set of segments for ϕ. In this section we will show that if a
formula ϕ is satisfiable in a rectangular model then there exists an SSS for ϕ or ϕ has
a brief model. If ϕ does not have a brief model then the SSS we find will be simply
constructed by taking all pairs of slices from a model of ϕ.
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Lemma 5.1 If ϕ is satisfiable then there is an SSS L for ϕ or a brief model of ϕ.

Proof: Let T = (U, T,<, g) be a model of ϕ. Say u0 ∈ U, t0 ∈ T and T , u0, t0 |= ϕ.
If T = {t0} then we have a brief model. So suppose there is another element of T .
For each u ∈ U, t ∈ T define S(u, t) = {β ∈ S | T , u, t |= β}. For each s, t ∈ T such
that s < t define seg(s, t) = (X, µ, ν) by putting X = {(S(u, s), S(u, t)) | u ∈ U},
µ(B, C) = B and ν(B, C) = C. This is a ϕ-segment.

Let L = {seg(s, t) | s, t ∈ T, and s < t}. It is not hard to show that L is an SSS: L
is finite as there are at most 22|ϕ| pairs of possible segments. For example, let us check
B4. Suppose (X, µ, ν) = seg(s, t) ∈ L for some s < t in T , x = (S(u, s), S(u, t)) ∈
X for some u ∈ U, Fα ∈ µ(x), Fα �∈ ν(x) and α �∈ ν(x). Thus T , u, s |= Fα and
T , u, t |= ¬Fα and T , u, t |= ¬α. So there is r ∈ T such that s < r < t and T , u, r |=
α. Let

1. (X ′, µ′, ν′) = seg(s, r) ∈ L ,
2. (X ′′, µ′′, ν′′) = seg(r, t) ∈ L ,
3. ρ ⊆ X × X ′ contain just ((S(v, s), S(v, t)), (S(v, s), S(v, r))) for each v ∈ U,

4. σ ⊆ X ′ × X ′′ contain just ((S(v, s), S(v, r)), (S(v, r), S(v, t))) for each v ∈ U,

5. τ ⊆ X ′′ × X contain just ((S(v, r), S(v, t)), (S(v, s), S(v, t))) for each v ∈ U,

6. x′′ = (S(u, r), S(u, t)) ∈ X ′′,
7. x′ = (S(u, s), S(u, r)) ∈ X ′.

Checking all the conditions is straightforward. For example let us check B4.1.
Suppose y ∈ X. Say y = (S(v, s), S(v, t)) for some v ∈ U. Simply let y′ =
(S(v, s), S(v, r)) and y′′ = (S(v, r), S(v, t)). It is clear that this will do. �

6 Curing defects Suppose that L is an SSS for ϕ. We will show that ϕ is satisfiable
in a rectangular model by gradually building a model by gluing together the segments
in L. In this section we will see how to extend a model constructed from segments so
that one defect in it is cured. In the next section we will see how continual curing of
defects eventually ends in a model for ϕ.

We will build a model for ϕ by concentrating on labeled structures. A (2S-) la-
beled structure is a tuple (U, T,<, λ) where U is a set, (T,<) a linear irreflexive
ordered set, and λ : (U × T ) −→ 2S. Traditionally such a map λ has been called a
chronicle. Our construction will only involve labeled structures which are built from
segments. We introduce the following definition.

Definition 6.1 The labeled structure T = (U, T,<, λ) is an (L-) segmented struc-
ture if and only if

C1 (T,<) is a finite suborder of the rationals of size at least two and
U is a finite set;

C2 for each (u, t) ∈ (U × T ), λ(u, t) is a maximally Boolean consistent set;
C3 for each (u, t) ∈ (U × T ), if Gα ∈ λ(u, t) then for all s > t in T ,

Gα ∈ λ(u, s) and α ∈ λ(u, s);
C4 for each (u, t) ∈ (U × T ), if Hα ∈ λ(u, t) then for all s < t in T ,

Hα ∈ λ(u, s) and α ∈ λ(u, s);
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C5 for each (u, t) ∈ (U × T ), if �α ∈ λ(u, t) then for all v ∈ U, α∈λ(v, t);
C6 for each (u, t) ∈ (U × T ), if ♦α ∈ λ(u, t) then there is v ∈ U such that

α ∈ λ(v, t);
C7 for each s < t in T that are immediate neighbors, there is (X, µ, ν) ∈ L

and a map q : U −→ X such that

C7.1 q is onto,
C7.2 for all u ∈ U, µ(q(u)) = λ(u, s) and ν(q(u)) = λ(u, t).

Definition 6.2 For a segmented structure T = (U, T,<, λ) and (u, t) ∈ U × T , we
say that (u, t, Fα) is a defect in T if and only if Fα ∈ λ(u, t) but there is no s > t in
T such that α ∈ λ(u, s). Similarly we have defects (u, t, Pα).

There are only finitely many defects in any segmented structure. In this section we
show how to cure defects. First we give the following definition:

Definition 6.3 A defect (u, t, χ) in a segmented structure T = (U, T,<, λ) is said
to be cured in segmented structure T ′ = (U ′, T ′,<′, λ′) if and only if T ⊆ T ′ and
there is an injection i : U −→ U ′ such that for all s ∈ T , v ∈ U, λ′(i(v), s)) = λ(v, s),
and (i(u), t, χ) is not a defect in T ′.

Claim 6.4 Under the assumption that L is an SSS for ϕ, we can cure any defect in
any L-segmented structure.

Suppose that the defect is (u, t1, Fα). Dual defects are dealt with similarly. A simple
induction establishes that there is t ∈ T such that t1 ≤ t and Fα ∈ λ(u, t) but either

1. t is the <-maximal element in (T,<) or
2. s is the immediate successor of t in (T,<) and Fα �∈ λ(u, s) and α �∈ λ(u, s).

It is clear that there is a defect (u, t, Fα) in T and that curing this defect will also cure
the defect (u, t1, Fα). The two cases are set out in the following two subsections.

6.1 The case of a maximal defect Suppose that s is the immediate predecessor
of t in (T,<). There is such an s by C1. By condition C7, there is (X, µ, ν) ∈ L
and a map q : U −→ X such that q is onto and for all v ∈ U, µ(q(v)) = λ(v, s) and
ν(q(v)) = λ(v, t). Thus Fα ∈ µ(q(u)). By condition B2 on L there is (X ′, µ′, ν′) ∈
L, ρ ⊆ X × X ′ and x′ ∈ X ′ such that:

D1 for all y ∈ X there is y′ ∈ X ′ such that ρ(y, y′);
D2 for all y′ ∈ X ′ there is y ∈ X such that ρ(y, y′);
D3 if ρ(y, y′) then ν(y) = µ′(y′);
D4 ρ(q(u), x′);
D5 α ∈ ν′(x′).

Choose an element t′ in the rationals greater than t. We define a new structure T ′ =
(U ′, T ′,<′, λ′) by

1. U ′ = {(v, y′) ∈ U × X ′ | (q(v), y′) ∈ ρ};
2. T ′ = T ∪ {t′};
3. (T ′,<′) is a suborder of the rationals;
4. λ′((v, y′), r) = λ(v, r) for v ∈ U, y′ ∈ X ′ and r ∈ T ;
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5. λ′((v, y′), t′) = ν′(y′) for v ∈ U and y′ ∈ X ′.

We will now check that T ′ is segmented. C1 and C2 are clear.
For C3 suppose that (v, y′) ∈ U ′, s1 <′ s2 in T ′, and Gα ∈ λ′((v, y′), s1). Clearly

s1 ∈ T so that Gα ∈ λ(v, s1). Either s2 ∈ T when the result follows immediately
from C3 in T or s2 = t′. In this latter case, λ′((v, y′), s2) = ν′(y′). But either s1 = t
when Gα ∈ λ(v, t) or s1 < t when condition C3 on T also gives us Gα ∈ λ(v, t). By
condition C7 applied to (X, µ, ν) and q as mentioned above, Gα ∈ ν(q(v)). Since
(v, y′) ∈ U ′, (q(v), y′) ∈ ρ and so, by D3, Gα ∈ µ′(y′). Finally coherency of the seg-
ment (X ′µ′ν′) gives us α ∈ ν′(y′) = λ′((v, y′), s2) and Gα ∈ ν′(y′) = λ′((v, y′), s2)

as required. Condition C4 is dual while conditions C5 and C6 are similarly straight-
forward.

For C7 there are two cases. If s1 <′ s2 are both in T then we find (any of) the
same (X1, µ1, ν1) and q1 : U −→ X1 as we would use to show C7 in T . However
we use q2 : U ′ −→ X1 given by q2((v, y′)) = q1(v). For the specific immediate
neighbors t and t′ from T ′ we use (X ′, µ′, ν′) and the map q′ : U ′ −→ X ′ given by
q′((v, y′)) = y′. It is easy to check that this will do.

We also define a map i : U −→ U ′. Let i(u) = (u, x′). This is in U ′ by D4.
For each other v ∈ U just choose any y′ ∈ X ′ such that (q(v), y′) ∈ ρ and put i(v) =
(v, y′) ∈ U ′. There is such a y′ by D1. It is clear that i is an injection. From the fact
that λ′((v, y′), s1) = λ(v, s1) it is also clear that i will do as the required injection
for extending our defective structure T : for any v ∈ U, for any s1 ∈ T , λ(v, s1) =
λ′(i(v), s1).

Finally we check (i(u), t, Fα) is not a defect of T ′. But this is clear as t < t′

and α ∈ λ′(i(u), t′) = λ′((u, x′), t′) = ν′(x′) by D5.

6.2 The case of a nonmaximal defect We have u ∈ U and t ∈ T such that Fα ∈
λ(u, t) but s is the immediate successor of t in (T,<) and Fα �∈ λ(u, s) and α �∈
λ(u, s). By condition C7 there is (X, µ, ν) ∈ L and a map q : U −→ X such that

1. q is onto;

2. for all u ∈ U, µ(q(u)) = λ(u, t) and ν(q(u)) = λ(u, s).

Thus Fα ∈ µ(q(u)) but Fα �∈ ν(q(u)) and α �∈ ν(q(u)). By condition B4 on L, there
is (X ′, µ′, ν′) ∈ L, (X ′′, µ′′, ν′′) ∈ L, ρ ⊆ X × X ′, σ ⊆ X ′ × X ′′ and τ ⊆ X ′′ × X,
x′′ ∈ X ′′ and x′ ∈ X ′ such that conditions B4.1 to B4.10 hold for x = q(u).

Choose an element t′ in the rationals between t and s. We define a new structure
T ′ = (U ′, T ′,<′, λ′) by

1. U ′ = {(v, y′, y′′) ∈ U × X ′ × X ′′ | (q(v), y′) ∈ ρ, (y′, y′′) ∈ σ and (y′′, q(v)) ∈
τ};

2. T ′ = T ∪ {t′};
3. (T ′,<′) is a suborder of the rationals;

4. λ′((v, y′, y′′), r) = λ(v, r) for v ∈ U, y′ ∈ X ′, y′′ ∈ X ′′ and r ∈ T ;

5. λ′((v, y′, y′′), t′) = ν′(y′) for v ∈ U, y′ ∈ X ′ and y′′ ∈ X ′′.

We can now check that T ′ is segmented. This is quite straightforward in parts and
similar to the proof in the last subsection in other parts.
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We establish C6. Suppose (v′, r) ∈ U ′ × T ′ and ♦α ∈ λ′(v′, r). Say v′ =
(v, y, y′′) ∈ U × X ′ × X ′′ for (q(v), y′) ∈ ρ, (y′, y′′) ∈ σ and (y′′, q(v)) ∈ τ. There
are two cases. First suppose that r ∈ t. Thus ♦α ∈ λ′(v′, r) = λ′((v, y′, y′′), r) =
λ(v, r). But T satisfies C6 and (v, r) ∈ U × T so there is w ∈ U such that α ∈
λ(w, r). Now q(w) ∈ X so we can use B4.1 to find z′ ∈ X ′ and z′′ ∈ X ′′ such that
(q(w), z′) ∈ ρ, (z′, z′′) ∈ σ and (z′′, q(w)) ∈ τ. Then w′ = (w, z′, z′′) ∈ U ′ and
α ∈ λ(w, r) = λ′((w, z′, z′′), r) = λ′(w′, r). The other case is that r = t′. Thus
♦α ∈ λ′(v′, t′) = λ′((v, y′, y′′), t′) = ν′(y′). By the coherency of (X ′, µ′, ν′), we
have z′ ∈ X ′ such that α ∈ ν′(z′). By B4.2 there is z ∈ X and z′′ ∈ X ′′ such that
(z, z′) ∈ ρ, (z′, z′′) ∈ σ and (z′′, z) ∈ τ. As q is onto X, there is w ∈ U such that
q(w) = z. Let w′ = (w, z, z′′) then α ∈ ν′(z′) = λ′((w, z′, z′′), t′) = λ′(w′, t′) as
required. This establishes C6.

We will also define a map i : U −→ U ′. Let i(u) = (u, x′, x′′). This is in U ′ by
B4.7, B4.8, and B4.9. For each other v ∈ U just choose any y′ ∈ X ′ and y′′ ∈ X ′′ such
that (q(v), y′) ∈ ρ, (y′, y′′) ∈ σ and (y′′, q(v)) ∈ τ and put i(v) = (v, y′, y′′) ∈ U ′.
There are such y′, y′′ by B4.1. It is clear that i is an injection. From the fact that
λ′((v, y′, y′′), s1) = λ(v, s1) it is also clear that i will do as the required injection
for extending our defective structure: for any v ∈ U, for any s1 ∈ T , λ(v, s1) =
λ′(i(v), s1).

Finally we check that we have cured the defect (u, t, Fα): we show that
(i(u), t, Fα) is not a defect of T ′. But this is clear as t < t′ and α ∈ λ′(i(u), t′) =
λ′((u, x′, x′′), t′) = ν′(x′) by B4.10.

7 Building a model from an SSS In this section we will show that any formula with
an SSS also has a rectangular model. It is possible that Fraı̈ssé techniques can be used
in combination with the defect-curing results of the previous sections. However, we
will use a straightforward step-by-step approach. We start with a small segmented
structure and build it up slowly, curing the defects successively. Finally, we extract a
model for the formula from the limit of the process. Suppose that L is an SSS for ϕ

and we wish to build a model for ϕ.

7.1 The induction By B1 there is (X, µ, ν) ∈ L and x ∈ X such that either ϕ ∈
µ(x) or ϕ ∈ ν(x). Define U0 = X, T0 = {0, 1} and <0= (0, 1) and λ0 : (U0 × T0) −→
2S by λ0(x, 0) = µ(x) and λ0(x, 1) = ν(x). Let T0 = (U0, T0,<0, λ0). Then T0 is a
segmented structure. We will need to keep an account of the defects in our succession
of structures. Number the defects in T0 1, . . . , k. It is clear that we have the condition
I1 as defined below.

Our induction hypothesis Iδ, for an ordinal δ, is that the following conditions
hold for each n with 0 < n < δ.

1. Tn = (Un, Tn,<, λn) is an L-segmented structure.

2. We have an injection in−1 : Un−1 −→ Un.

3. Tn−1 ⊆ Tn.

4. For each u ∈ Un−1, for each t ∈ Tn−1, λn(in−1(u), t) = λn−1(u, t).

5. The defects (if any) in Tn are numbered with distinct numbers greater than n.
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6. For each u ∈ Un−1, for each t ∈ Tn−1, if (u, t, χ) is a defect numbered d in Tn−1,

then either (in−1(u), t, χ) is not a defect in Tn, or it is a defect numbered d in
Tn.

7. T0 is a segmented structure, its defects are numbered > 0, and there is t0 ∈ T0

and u0 ∈ U0 such that ϕ ∈ λ0(u0, t0).

We have already seen that we have I1 holding.
Suppose that we have constructed the Tn, in and the numbering of defects so that

Iδ holds. Now check whether there is any defect numbered δ in Tδ−1. If there is not
then we just let Tδ = Tδ−1, iδ−1 be the identity and we leave the numbering the same
in Tδ as it is in Tδ−1.

If there is a defect (u, t, χ) say, numbered δ in Tδ−1, then we use the defect-
curing technique described above to construct Tδ and the injection iδ−1 : Uδ−1 −→ Uδ

so that (iδ−1(u), t, χ) is not a defect in Tδ. To number each defect in Tδ we simply
check whether it is (iδ−1(v), s, ψ) for some defect (v, s, ψ) in Tδ−1. If it is, then the
defect inherits the number from the defect in Tδ−1. Note that as we have cured the
defect numbered δ, then this number will not be inherited. After we have numbered
all the inherited defects in this way we give any new defects distinct unused numbers
greater than δ. After this it is clear that we have Iδ+1 holding. Thus, by induction, we
have Iω holding.

7.2 The limit We may assume that all the Uns are distinct. Define ∼ on
⋃

Un as
follows. Suppose u, v ∈ ⋃

Un, say that u ∈ Un and v ∈ Um. Put u ∼ v if n < m and
v = im−1(im−2(. . . , in(u), . . .)) and close ∼ under reflexivity and symmetry to make
it an equivalence relation. Note that we have the following.

H1 For all n, for all u ∈ ⋃
Un, for all t ∈ T , if Un contains some v such that

u ∼ v then for all m ≥ n,Um contains some w such that u ∼ w.
H2 If u∼v and u ∈ Un, v ∈ Um then for any t∈Tn ∩ Tm, λn(u, t) = λm(v, t).
H3 If (u, t, χ) is a defect in Tm then there is n > m and v ∈ Un such that

u ∼ v and (v, t, χ) is not a defect in Tn.

These properties are simple consequences of Iω. To prove H3, suppose that the defect
(u, t, χ) is numbered k in Tm. So k > m. By Iω

6 and a simple induction we can find
a smallest n > m such that (in−1(in−2(. . . , im(u), . . .)), t, χ) is not a defect in Tn.
There must be such an n for otherwise we would end up with a defect numbered k in
Tk contradicting Iω property 5). Now simply put v = in−1(in−2(. . . , im(u), . . .)).

We define the structure (E, T,<) by E = (
⋃

Un)/ ∼, T = ⋃
Tn ⊆ Q and <

being inherited from (Q,<). We also label this structure by λ. For λ(e, t) for any
e ∈ E and t ∈ T , choose n large enough so that Un contains some v ∈ e and t ∈ Tn. This
can be done by conditions H1 and Iω property 3. Now simply put λ(e, t) = λn(v, t).
This is well defined by H2.

(E, T,<, λ) has the following properties.

G1 (T,<) is a linear order.
G2 Each λ(e, t) is a maximally Boolean consistent subset of S. This follows

from the definition of λ and C2.
G3 If �α ∈ λ(e, t) then for all e′ ∈ E, α ∈ λ(e′, t). Suppose e, e′ ∈ E, t ∈ T

and �α ∈ λ(e, t). Using H1 and Iω, choose m large enough so that
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t ∈ Tm and there is u, u′ ∈ Um with u ∈ e and u′ ∈ e′. By the definition of
λ, �α ∈ λm(u, t) = λ(e, t). By Iω, Tm = (Um, Tm,<m, λm) satisfies C1–7.
By C5, α ∈ λm(u′, t). By the definition of λ, α ∈ λ(e′, t) as required.

G4 If ♦α ∈ λ(e, t) then there is e′ ∈ E such that α ∈ λ(e′, t). This is proved
similarly to G3.

G5 If Gα ∈ λ(e, t) then for all s ∈ T , if t < s, α ∈ λ(e, s). Suppose that
Gα ∈ λ(e, t) and t < s. Choose m large enough that s, t ∈ Tm and there
is u ∈ Um such that u ∈ e. By the definition of λ, Gα ∈ λm(u, t). By C1
and the definition of <, t <m s in (Tm,<m). By C3, α ∈ λm(u, s).
By the definition of λ, α ∈ λ(e, s) as required.

G6 We have the dual of G5 for Hα.
G7 If Fα ∈ λ(e, t) then there is s ∈ T , such that t < s and α ∈ λ(e, s).

Choose m large enough so that t ∈ Tm and there is u ∈ Um with u ∈ e. By the definition
of λ, Fα ∈ λm(u, t). Possibly, there is s ∈ Tn such that t <m s and α ∈ λm(u, s). Then
by C1 and the definition of <, t < s in (T,<) and by the definition of λ, α ∈ λ(e, s)
as required.

Otherwise, (u, t, Fα) is a defect in Tm. Thus by H3 there is n > m and v ∈ Un

such that v ∼ u and (v, t, Fα) is not a defect in Tn. So there is s ∈ Tn such that t <n s
and α ∈ λn(v, s). Then by C1 and the definition of <, t < s in (T,<) and by the
definition of λ, α ∈ λ(e, s) as required.

G8 We have the dual of G7 for Pα.
G9 ϕ ∈ λ([x0], t0).

Our model of ϕ will be T = (E, T,<, g) where g : (E × T ) −→ 2L is defined by
g(e, t) = {p ∈ L | p ∈ λ(e, t)}. By G9, there is ([x0], t0) ∈ E × T such that ϕ is in
λ([x0], t0). The next result will show that (E, T,<, g), [x0], t0 |= ϕ.

Lemma 7.1 For all ψ ∈ S, for all e ∈ E, for all t ∈ T, ψ ∈ λ(e, t) if and only if
T , e, t |= ψ.

Proof: We proceed by induction on the construction of ψ. The cases of atoms �,
¬ψ, and ψ ∧ χ are trivial by the definition of g and G2. For Fψ, suppose Fψ ∈
λ(e, t). By G7 there is s ∈ t such that t < s and ψ ∈ λ(e, s). By the inductive hy-
pothesis, T , e, s |= ψ so T , e, t |= Fψ. Conversely, suppose T , e, t |= Fψ so there
is s ∈ T with t < s and T , e, s |= ψ. By the inductive hypothesis, ψ ∈ λ(e, s). By G2
and G5, Fψ ∈ λ(e, t). The case of Pψ is analogous.

For ♦ψ, suppose ♦ψ ∈ λ(e, t). By G4 there is e′ ∈ E such that ψ ∈ λ(e′, t).
By the inductive hypothesis, T , e′, t |= ψ so T , e, t |= ♦ψ. Conversely, suppose
T , e, t |= ♦ψ so there is e′ ∈ E with T , e′, t |= ψ. By the inductive hypothesis,
ψ ∈ λ(e′, t). By G2 and G3, ♦ψ ∈ λ(e, t). �

8 Decidability Before summarizing our decision procedure, we need to check a few
facts about brief models.

Lemma 8.1 ϕ has a brief model if and only if there is a set A ⊆ 2S such that

1. each a ∈ A is a maximally Boolean consistent set;
2. no Fα or Pα is in any a ∈ A;
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3. if �α ∈ a then for all b ∈ A we have α ∈ b;

4. if a ∈ A and ♦α ∈ a then there is b ∈ A such that α ∈ b;

5. there is a ∈ A with ϕ ∈ a.

Proof: For the forward direction, say (U, {t0},∅, g), u0, t0 |= ϕ. Let A =
{‖u‖ | u ∈ U} where for each u ∈ U, ‖u‖ = {α ∈ S | (U, {t0},∅, g), u, t0 |= α}. Con-
versely, let U = A, T = {0}, < be empty and define g to take (a, 0) to {p ∈ L | p ∈ a}.

�
Since there are only a finite number of subsets of 2S, it is straightforward to describe
an algorithm which decides whether ϕ has a brief model. We are now able to present
a deciding algorithm for the satisfiability of formulas in the logic FP♦.

Theorem 8.2 Satisfiability of FP♦ formulas is decidable.

Proof: Suppose we are to check whether ϕ has a model. First use the algorithm
above to see whether ϕ has a brief model. If not, then proceed as follows.

Suppose that the complexity (length) of ϕ is n. Thus the size of S is at most
2n. There are at most 22n maximally Boolean consistent subsets of S. There are at
most 224n

different ϕ-segments (X, µ, ν)—up to difference in X. Using an idea of
Pratt from [16], we can start with this set of all different ϕ-segments and gradually
whittle it down to an SSS for ϕ by throwing away incoherent or incurable segments.
Eventually we lose any witness for ϕ in the set of segments (in which case there is no
SSS for ϕ) or the process reaches a fixed set which will be an SSS for ϕ.

If there is an SSS for ϕ then ϕ has a model. If there is no SSS for ϕ nor a brief
model of ϕ then ϕ is not satisfiable. �
Of course, this may not be the most efficient decision procedure possible. In [5], a
related logic (the temporal-knowledge logic of one agent who knows the time but
neither learns nor forgets) over natural numbers time, is shown to have an EXPSPACE-
hard decision problem. It might be possible to use the techniques of these authors to
show that our decision problem is also EXPSPACE-hard, but finding matching lower
and upper bounds on its complexity will have to remain as an open problem.

9 No finite model property In this section we will show that the logic FP♦ does not
have the finite model property. This will show that the mosaic method for proving de-
cidability is stronger than the traditional method of using the finite model property.
Having to use other decidability techniques is not entirely new to temporal logic—
for example, many temporal logics over the integers or natural numbers have no fi-
nite models and we usually resort to automata techniques to show their decidability.
However, mosaics look even more like finite models than automata do and so it is
worth presenting the result of this section to demonstrate a clear distinction between
the techniques.

First we define our terms. We have already met (valued) rectangular structures:
that is, (U, T,<, g) in which U is a nonempty set, (T,<) is a nonempty linear ir-
reflexive order and g : U × T −→ 2L . Recall that a formula ϕ of FP♦ is a validity
if and only if for every rectangular structure (U, T,<, g), for every u ∈ U, for every
t ∈ T , we have (U, T,<, g), u, t |= ϕ.



434 MARK REYNOLDS

Now we introduce more general structures. Say that M = (W, π, ρ, σ, g) is a
(valued) Kripke structure (for FP♦) if and only if W is a nonempty set, π, ρ, σ ⊆
W × W and g : W −→ 2L . We define truth of FP♦-formulas at worlds in Kripke
structures by using π, ρ, and σ as the accessibility relations for F, P, and ♦ in the
usual way. For example, we have clauses

1. M ,w |= p iff p ∈ g(w);
2. M ,w |= Fα iff there is w′ ∈ W such that (w,w′) ∈ π and M ,w′ |= α;
3. M ,w |= ♦α iff there is w′ ∈ W such that (w,w′) ∈ σ and M ,w′ |= α.

We say that M is finite if and only if W is. We say that the Kripke structure M is
a model of FP♦ if and only if for every validity ϕ of FP♦ and for every w ∈ W we
have M ,w |= ϕ. We say that the logic FP♦ has the finite model property if and only
if for every formula ϕ of FP♦ which is not a validity there is a finite Kripke structure
M which is a model of FP♦ but for which there is w ∈ W with M ,w |= ¬ϕ. Note
that since we can easily axiomatize FP♦ using an IRR-style rule (see the long version
[18]) then it would follow that FP♦ is decidable if we could show that FP♦ has the
finite model property. Now we show the following theorem.

Theorem 9.1 FP♦ does not have the finite model property.

Proof: Let ψ0 = q ∧ H¬q and for each i ≥ 0, let ψi+1 = Pψi ∧ H H¬ψi. In fact
we will show that the formula

ϕ = F� ∧ G♦(ψ0 ∧ Fψ1)

does not have a finite Kripke model in which all the validities of FP♦ are valid. Note
that ϕ is satisfiable in a rectangular structure so ¬ϕ is not a validity.

Suppose for contradiction that M = (W, π, ρ, σ, g) is a finite Kripke model of
FP♦ such that there is w ∈ W with M ,w |= ϕ. First, it is clear that there is w0 ∈ W
with M ,w0 |= ψ0. We also have (w,w0) ∈ π ◦ σ. We will show by induction that
for each i ≥ 0 there is some wi ∈ W with

1. M ,wi |= ψi and
2. (w,wi) ∈ (π ◦ σ ◦ πi).

To help we will define χ0 = ♦(ψ0 ∧ Fψ1) and for each i ≥ 0 define χi+1 = Gχi.

Note that Gχ0 −→ G�χi is a validity ofFP♦ for any i ≥ 0.
We have already established the inductive property for i = 0. Now suppose that

it is true for some i ≥ 0. Since M is a model of FP♦ we have M ,w |= G�χi. Since
(w,wi) ∈ (π ◦ σ ◦ πi) we thus have M ,wi |= ♦(ψ0 ∧ Fψ1) as well as the assumed
M ,wi |= ψi. Another validity of FP♦ is

(♦(ψ0 ∧ Fψ1) ∧ ψi) −→ Fψi+1.

Thus M ,wi |= Fψi+1. This gives us the required wi+1 ∈ W .
Now that we have our set {wi|i ≥ 0} of elements of W we are finished when we

show that they are all distinct for i > 0. Assume for contradiction that 0 < i < j but
wi = w j. Thus M ,wi |= Pψ j−1 ∧ H H¬ψi−1. Thus there is v ∈ W with M , v |=
ψ j−1 ∧ H¬ψi−1. However, it is a validity of FP♦ that ψ j−1 −→ Pψi−1 so we have
our contradiction. �
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10 Conclusion Although the logic FP♦ is not new, we have been able, using the
new mosaic techniques, to provide the first decidability result for it. As we have also
shown that the logic does not have the finite model property we can conclude that
the mosaic method provides useful new tools for investigating modal and temporal
logics.

As we have seen there are many related logics so it is very possible that applying
the mosaic method in similar ways will provide a very fruitful research opportunity.
One open problem which is very close to the problem considered in this paper con-
cerns the use of the horizontal difference operator D where the semantic clause for D
is

M , u, t |= Dα iff there is v ∈ U such that v �= u and M , v, t |= α.

It seems that the addition of the D operator to our rectangular logic results in a subtly
more complicated logic for which no decision procedure is known.

Another open problem closely connected with the results here concerns the com-
plexity of the decision procedure. The algorithm presented in Section 8 is highly com-
plex but it is very probable that much less complex procedures exist. We have briefly
described a double exponentially complex procedure and mentioned some possible
techniques for finding an EXPSPACE lower bound. An existing lower bound on the
complexity is given by the recent result in Marx [13] in which it is shown (also using
mosaic techniques) that the product logic of S5 and S5 is nexptime complete.
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