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A Decidable Temporal Logic
of Parallelism

MARK REYNOLDS

Abstract Inthispaper we shall introduce asimpletemporal logic suitablefor
reasoning about the temporal aspects of parallel universes, parallel processes,
distributed systems, or multiple agents. We will use a variant of the mosaic
method to prove decidability of this logic. We aso show that the logic does
not have thefinite model property. This shows that the mosaic method is some-
times a stronger way of establishing decidability.

1 Introduction The logic, FP$, investigated here is not new. It has been men-
tioned in Thomason [21], for example, and is one of the simplest ways of combining
temporal and modal operators. It is a propositional logic with formulas built using
the two Priorean temporal connectives F and P along with amodal operator ¢. The
semantics are evaluated on a rectangular frame consisting of the cross product of a
linear order and a nonempty set. The temporal and modal operators act in a perpen-
dicular fashion: thus we have asimple combination Priorean temporal logic of linear
time and an S5 modal logic.

In computer science applications, ordinary one dimensional temporal logic is
itself widely recognized as a convenient formalism for representing and reasoning
about the behavior of complex and reactive systems. However, adding the modal di-
mension really does add another dimension to the expressibility. The modality can
be used to represent reference to parallel universes or to other processes or agentsin
acomplex system. Theincreased expressivenessis apparent when we realize that we
can describe systems of unbounded or infinite size.

Many similar logics have been studied. They include branching timelogics, log-
ics of knowledge and belief, other logics of complex systems, and modal versions of
cylindric algebras. We survey some in Section[2] FP¢ turns out to be very closely
related to the simplest versions of many of theselogics. However, the combination of
apast and future temporal logic over general linear time with an S5 modal logic does
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not seem to have been studied. Most published work here concerns logics with lan-
guages restricted to the future temporal modalities and semantics restricted to natural
numbers time. Decidability results for some of these logics exist.

One of theinteresting contributions of this paper isthe method for the decidabil-
ity result. From its beginningsin algebraic logic in Németi [[I5], this mosaic method
has grown to be increasingly used in proving decidability and completeness for vari-
ous multimodal logics. It iswell explained in Venemaand Marx [23] whereit is used
to prove compl eteness and decidability of thelogic LC,—ageneralization of amodal
version of first-order logic. This paper (along with “Temporal mosaics,” forthcom-
ing by Marx, Mikulas, and Reynolds) pioneers the use of the method in the context
of temporal logic.

Often, completeness and decidability proofs proceed in a step-by-step manner
adding one point at atimeto eventually build amodel of asatisfiable formula. Inthe
mosaic method we instead try to find a set of small pieces of amodel which satisfies
acertain closure property. Thiswill be enough to guarantee that the small pieces can
be put together to form amodel. The actua putting together can either be done by a
very simple step-by-step operation (asin [23]) or (as shown recently in Hodkinson et
al. [[[1]) we might be ableto use new techniques (of Herwig [10] and Hrushovski [12])
to immediately find the model. In using the mosaic method to give a decidability
proof we need to define mosai cs appropriate for thelogic and define closure properties
(dependent on agiven formula) for afinite set of mosaics so that the existence of such
aset of acertain size will be equivalent to the existence of amodel for the formula.

In order to briefly describe the method used in this paper we will picture our
rectangular frames with the linear order arranged vertically—qgreater corresponding
to above—and the nonempty set arranged horizontally. Worldsin models correspond
to ordered pairs. Sincewe areinterested in the satisfiability of aparticular formulawe
will equate each of these worlds with a set of subformulas of this formula—namely,
thosetrueinthat world. The mosaicswe use here correspond to slices of arectangular
model made along a pair of time points—that is, the slices are horizontal. The slices
produce pairs of worlds: one on the bottom dlice, the other above it on the top slice.
The possibly infinite number of pairs of worlds inhabiting each mosaic are factored
out by an equivalence based on the local truth of the subformulas of the original for-
mula. Thusthereareonly afinite number of equivalence classesof pairs. A particular
mosaic should thus be expected to exhibit various sensible “ coherency” conditions.
For example, if Ga, “awaysin the future «”, is in the bottom world of a pair then
we expect « to be in the top world of the pair. There are corresponding coherency
conditions for the past modality and the perpendicular { modality.

Noticethat it may bethe casethat Fo isin the top world of apair in the mosaic.
In this case we say that the mosaic has a defect. There are four types of defect ato-
gether. If we wanted to build a model for our formula then we would hope that we
could use other mosaics to put on top of ones with such a defect to cure the defect—
that is, provide a witness for «. The decidability method will thus concentrate on
finding what we will call asaturated set of mosaics. Such aset should contain all that
is needed to cure any defects of mosaicswithin itself. The proof consists of showing
that the existence of such a saturated set is equivalent to the satisfiability of the origi-
nal formula. We aso must show that there isafinite bound on the number of mosaics
needed to make a saturated set.



DECIDABLE TEMPORAL LOGIC OF PARALLELISM 421

Inthelong version of this paper [[18], we usean IRR stylerule (cf. Gabbay, Hod-
kinson, and Reynolds|[8]) to give astraight forward axiomatization of thelogic. With
such an axiomatization available, it isrelevant to ask whether asimpledecision proce-
dure can be presented for the logic based on the finite model property. In Section[9]
we show that the logic FP{ is an interesting candidate for a decidability proof via
the mosaic method because, the logic does not have the finite model property. This
shows that the finite set of mosaics with the closure property is not just afinite model
in disguise. Finally we conclude with some related open problems.

2 ThelogicFP{ Formulasare constructed from propositional atoms (from L say)
and T using —, A, and the three modalities ¢, F, and P. F and P will act like the
usual mutually dual Priorean temporal connectives. The other modality ¢ will actin
a perpendicular fashion as we will see. We use the usual abbreviations: 1, v, —,
G, H, 0. Note that O« isthus =0—a.

Semanticsisover rectangular structures, that is, theframeis (U, T, <) for some
nonempty set U and some nonempty irreflexivelinear order (T, <). Valuationsof the
atomsare made at pairs (u, t). Truthinastructure M = (U, T, <, g) under valuation
g:U x T — 2% isdefined inductively as follows:

M,ut = piff pegu,t);

M,ut = T;

M,ut E anBiff M,utEacand M, u,tk=p;

M,ut = —aiff M, u,tpa;

M,u,t E Faiffthereisse T suchthatt < sand M, u, s = «;
M,u,t | Paiffthereisse T suchthats <tand M, u, s = «;
M,u,t E Ou«iff thereisv € U suchthat M, v, t = «.

Wesay that (U, T, <) isabrief structureif and only if T isasingleton (so < isempty).

The simple modal fragment involving ¢ ismade alot more powerful by itscom-
bination with the temporal logic. For example, we can say that there are an infinite
number of paralel time-lines:

FTAGFT AGO(QA H—Q).

4 -q —q
H-g

L e o o o
(T. <) 9 -q-q -
H a—q —q

-/

e o o o o
now —q —¢q —q —q
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The only rectangular models of this formula are infinite. In Section[9] we will con-
sider whether thisimplies that the logic lacks the finite model property.

3 Related logics FP{ logic is a restriction of the Synchronized Ockhamist
branching-time logic of Di Maio and Zanardo [[3]. The semantical structures (called
T x W framesin [21]) for thislogic involve the cross product of alinear order (T, <)
and a set W along with equivalence relations ~; on W for eacht € T. The equiva
lence relations must satisfy the property that w ~; w’ andt’ < t impliesw ~¢ w'.
The order (T, <) represents time and the elements of the set W represent alternative
histories. The ~¢-class containing w can be used to represent the histories which are
possible from the point of view of theworld (t, w). Thusthe modality {, defined by

(T’ <, Wv {Nt}7 g), t, w IZ <>2a iff
Jw' e W, suchthat w~iw and (T, <, W, {~},0).t, v Ea

representsthe ideaof “at thistime in some history which is currently considered pos-
sible’. The modality {1 defined by

(Tv <, Wv {Nt}v g)a ta w '= <>10[ lff
Jw’ e W, suchthat (T, <,W,{~},9).,t,w =«

representstheideaof “at thistimein somehistory”. Itisthislatter modality which ex-
tends the nontempora modality inthelogic FP{. Logicsvery similar to the synchro-
nized logic form bases for logics of agency in Belnap and Perloff [ and causation
invon Kutschera[24]. There are axiomatizations of such logicin von Kutschera [25]
and Di Maio and Zanardo [[4]. It seems to be an open problem whether thislogic is
decidable.

Logics of historical necessity or Ockhamist logics are closely related examples
of a combined logic. They are not neatly two-dimensional logics but we do have a
modal logic of possibility in some sense orthogonal to alinear temporal logic. These
logics are obtained by removing the {1 modality from the synchronized logic above.
They are described in Burgess [2] while there are axiomatizations in Zanardo [[26],
Zanardo [27], and [[8]. A special case of this logic is proved decidable in Gurevich
and Shelah [9].

Many combinations of time and other modalities arise from formal investiga-
tions into how knowledge (or belief) changes over time. These logics are usualy
designed for reasoning about systems of multiple agents. See Fagin et a. [5] for a
comprehensive survey. A temporal-epistemic logic for n agents will use n knowl-
edge modalities. Thus the versions which are of relevance to us here are simple
ones, formalizing the changes in knowledge of one lone agent who knows about the
world and her or his own knowledge. S5 is commonly taken to be the nontempo-
ral logic of knowledge appropriate for one agent. So we can formalize the semantics
of the temporal-epistemic logic using a two-dimensiona frame very similar in gen-
era form to those for synchronized historical necessity. However, the accessibility
relation for the knowledge modality does not have to be restricted to being between
worlds (t, w) and (t', w’) witht = t’. In the case with time being the natural num-
bers these logics are well studied. In [5 alogic isintroduced which is like FP{ but
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involves tomorrow and until temporal operators, has a natural numbers frame, has
an EX PSPA CE-compl ete decision procedure, and is given a complete axiomatization.
Thisisatemporal-epistemic logic of one agent who doesn’t forget, doesn’t learn and
who knows the time.

We have mentioned thatFP{ logic has applications to systems of parallel pro-
cesses. There has been some work in devel oping two-dimensional logic for such ap-
plications. In Reif and Sistla[[17], for example, we find alogic combining temporal
and spatial modalities. Once again the temporal dimension is the natural numbers
and we have the other dimension based on a set of processes. However, thereis a set
of names for links which may or may not connect one process to another. The lan-
guage uses until in the temporal direction but has a spatial modality for each link as
well as one for the transitive closure of all links. Thisleads to a highly undecidable,
unaxiomatizable logic. In Sistlaand German [[20], on the other hand, we have asim-
ilar logic but without the linking modalities. There is just the one existential spatial
modality asin FP{). With until as the temporal connective and the natural numbers
astime, deciding validity in thislogic is stated to be EXPSPACE-complete.

There are other temporal logics in the literature with a two-dimensional flavor.
For example, there arethelogicsarising from general temporalizing (Finger and Gab-
bay [[Z]) and combining (Finger and Gabbay [[]) techniques. Temporalizing allows
the adding of atemporal logic on top of any other logic. Truth is evaluated in two-
dimensional structures but only a restricted language is available—formulas with a
horizontal modality nested inside a vertical one, say, are outlawed. Combining or
Fibring techniques, on the other hand, allow the full two-dimensional language but
also allow very complex models without commutativity of the two accessibility rela
tions <1 and <. Such structures are sometimes known as independent combinations
of modal logics (Thomason [22]). Such logics are used to investigate the preservation
of various logical properties under combination logics. They can also sometimes be
the only way of keeping combinations of logic decidable.

There is a wealth of two-dimensional nontemporal modal logics which have
been investigated. One of the most fruitful areas here has been the investigation of
modal versions of first-order logic and their cylindric algebracounterparts. 1f welook
at first-order logic with no function symbols, relations of arity only 1 or 2 and only
two variable symbols, then we can regard the existential quantifier as a modal oper-
ator and come up with a two-dimensional modal logic which is the same as that in
Segerberg [19]. In Marx [[I4], a similar modal logic is studied. This logic is proved
decidable and the proof is an example of the mosaic method which we now turn to.

4 Segments Supposethat ¢ isaformula. Let Sbe the set of subformulas of ¢ in-
cluding the single negations of honnegated subformulas. We are interested in decid-
ing whether ¢ is satisfiable, that is, there exists valuated structure (U, T, <, g) and
ueU,te Tsuchthat (U, T, <,0),u,t = ¢. Asdescribed in the introduction, we
will be using the mosaic method to provide the decision procedure. First we will de-
fine amosaic—a small piece of model which we will eventually use to build whole
models. Because the pieces in this proof are supposed to correspond to whole seg-
ments across arectangular model, we will call the pieces* segments’ rather than mo-
saics.
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The idea of a segment comes from considering a pair of slices cut horizontally
across the whole of a rectangular model. Such a pair of slices gives rise to a set of
pairs of worlds: aworld on the bottom slice paired with the world directly above it
on the top dlice. We shall equate worlds with the set of formulas from Slocally true
in that world in the sliced model and thus we have just afinite set X of pairs. We will
let 1 (X) bethe lower set of formulasin apair x and v(x) be the upper set.

We can picture a segment as follows:

v(X1) v(X2) v(Xn)
X1 X2 Xn
Forward
intime.  4(x;)  p(X) e (Xn)
where {Xq, ..., X2} arethe paralel timelines. This leads us to the following defini-
tion.

Definition 4.1 A ¢-segmentisatriple (X, u, v) such that

. Xisafinite s¢t;

n,v: X —> 25

if w(xX) =pu(y)andv(x) =v(y)thenx=y;

each p(X) and v(X) isamaximally Boolean consistent set;
if Ga € u(X) then o € v(x) and Ga € v(X);

if He e v(X) thena € u(X) and Ha € u(X);

if o e w(x) thenfordl ye X, o € u(y);

if Do € v(X) thenforal y e X, o € v(y);

if O € w(x) thenthereisy e X suchthat « € u(y);

if O € v(X) thenthereisy € X suchthat o € v(y).

=

© oo N kWD

=
©

Such conditions are often called coherency conditions for mosaics.

The decision procedure for satisfiability of ¢ amountsto looking for aset of seg-
mentswhich are sufficient so that they can be put together to build arectangular model
of ¢. Aswe have seen, the models of ¢ may all be infinite. Nevertheless, we will
show that a finite set of segments will suffice to build a model. Of course, we may
need many copies of the same segment at various stages of the construction.

Thetest for sufficiency of agiven finite set L of segmentsissurprisingly simple.
Inactual fact, we need only consider one segment at atime from L and make sure that
certain closely related segments are also in L. Consider a segment A = (X, u, v).
Supposethat Fa € v(x) for some x € X. Thismeansthat if weever use Ain building
our model then there will be apoint on top of the model (if A hasjust been placed on
top) at which Fa should be true. It is clear that at some later stage we are going to
have to place a segment on top of the partially completed model which makes o true
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at the point above v(x). The Fa in v(x) iscalled adefect in A and the process of later
placing awitness for « at the right point is called curing the defect. We will require
that a segment for curing the defect in Aisalsoin L available for our use.

There are other sorts of defects as described in B3, B4, and B5 below. Return-
ing to consider our set L of segments, it turns out that we need only make sure that
we can cure defects in each of the segmentsin L using only segments from L. Such
considerations give rise to the following definition.

Definition 4.2 A saturated set of segments (SSS) for ¢ isa set L of ¢-segments
such that

Bl thereis(X, u,v) € L, and x € X such that either ¢ € u(x) or ¢ € v(X);
B2 if (X,u,v)el,xe Xand Fa € v(X) thenthereis (X', u’, V') € L,
p € Xx X and X' € X' such that

B2.1 forall ye Xthereisy € X' suchthat p(y, y),
B2.2 foraly e X' thereisy e X suchthat p(y, y),
B2.3 if p(y, y) thenv(y) = n/(Y),

B24 p(x, X)),

B25 o< v(X);

B3 smilarly for Pa;

B4 if (X, u,v)el,xe X, Fae ux), Fe & v(x) anda ¢ v(x) then there
is(X,u,VYelL, (X, u'vhelL pC Xx X,0C X' x X"and
T C X" x X, X" e X" and X' € X’ such that

B4.1 forall ye Xthereisy € X andy’ € X” such that
p(Y, YD), oy, y") and t(y", y),

B4.2 foraly € X thereisye Xandy’ € X” such that
p(Y. YD), oy, y") and t(y", y),

B4.3 forall y” € X" thereisthereisy € X' and y € X such that
p(Y. YD), oy, y") and t(y", y),

B4.4 if p(y, y') then u(y) = u'(y),

B4.5 if o(y,y") thenv'(y) = u"(y"),

B4.6 if t(y’,y) thenv'(y") = v(y),

B4.7 p(x, X)),

B4.8 o(X,x"),

B49 1(X’,x),

B4.10 « € v(X);

B5 similarly for Pa.

There are several aspects of this definition that need to be explained. First, the defect
and cure considered in B4. Here we have supposed we have asegment (X, w, v) € L
with Fa € p(X) but neither Fo nor o € v(x). When we are building a model and
we use this segment then we will haveto, at alater stage, replace it by two segments
which fitted together one immediately above the other match the original. Thisisbe-
cause there must be awitnessto « in between the two sliceswhich formed the original
segment.
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If G-« then
S * «— o *—o
o
>
[ ® ® —o
Fa

The other important aspect of curing defects is the seemingly very complicated way
inwhich segmentsfit together, one above the other. For example, in B2, weintroduce
arelation p € X x X’ to do thefitting or gluing together. Of course, p must be atotal
relation (condition B2.1) and p must be onto (condition B2.2) so that time lines do
not end or begin at joins in our segmented model. But why do we not require that p
is one-to-one? Thisis because, it may be recalled, segments do not correspond ex-
actly to pairs of dicesin amodel but to sets of pairs of worlds at slices factored out
by equivalencein truth of formulasfrom S. It so happens that sometimes during con-
struction the set of time-lines constructed by some stage needs to suffer a splitting of
two (or more) equivaent lines in order to continue each of them in a different way.
Thisiswhy our gluing allows forking in one direction or another.

Here is an example of the result of gluing segments together where the lower
case |ettersrefer to sets of formulas which label the points of the segments:

a b c d e f
a ab ¢ de f f
o0 —0—0—0— 00— 90— 90
h |h|h ] |.
g : _ ® |

P | S———————

N RS
g h j J
*—1o—0—0—0—0—0—0
k I m mmno p
k| m n o p

5 Soundnessof thesaturation condition  Themain result we provein the next few
sections is that the existence of a rectangular model for ¢ is amost equivalent to the
existence of a saturated set of segments for ¢. In this section we will show that if a
formula ¢ is satisfiable in arectangular model then there exists an SSSfor ¢ or ¢ has
abrief model. If ¢ does not have a brief model then the SSS we find will be ssimply
constructed by taking all pairs of slices from amodel of ¢.
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Lemmab.l If g issatisfiablethenthereisan SSSL for ¢ or a brief model of ¢.

Proof: Let7 = (U, T, <, g) beamodel of . Sayug e U,tg € Tand 7, ug, tg = ¢.
If T = {to} then we have a brief model. So suppose there is another element of T.
Foreachue U,t e T defineS(u,t) ={8e S| 7,u,t = B}. Foreachs, t € T such
that s < t define seg(s, t) = (X, i, v) by putting X = {(S(u, s), S(u,t)) | u € U},
u(B,C) =Bandv(B, C) = C. Thisisag-segment.

LetL={seg(s,t)|s teT, ands < t}. Itisnot hardtoshowthat Lisan SSS: L
isfinite asthere are at most 22/¢! pairs of possible segments. For example, let uscheck
B4. Suppose (X, i, v) = seg(s,t) € Lforsomes < tinT, x= (S(u,s), S(u,t)) €
X forsomeu e U, Fa € u(x), Fae € v(x) and @ € v(x). Thus 7, u, s = Fa and
T,uteE—-Faand7,u,t = —«a. Sothereisr € Tsuchthats<r <tand 7, u,r =
o. Let

1L (X, u,vV)y=seg(sr)el,
X", Wy =seg(r,t) e L,
p C X x X' containjust ((S(v, s), S(v, 1)), (S(v, S), S(v,r))) foreachv € U,
o C X' x X" containjust ((S(v, s), S(v, 1)), (S(v, 1), S(v,1))) foreachv € U,
7 C X’ x Xcontainjust ((S(v,r), S(v, 1)), (S(v, s), S(v, t))) foreachv € U,
X" = (S(u,r), S(u, t)) € X",

7. X = (S(u,s), S(u,r)) € X.
Checking all the conditions is straightforward. For example let us check B4.1.
Suppose y € X. Say Yy = (S(v,9), S(v, t)) for some v € U. Simply let y =
(S(v, ), S(v,r)) andy’ = (S(v, 1), S(v, t)). Itisclear that thiswill do. O

o0 kcwDd

6 Curingdefects Supposethat L isan SSSfor ¢. Wewill show that ¢ is satisfiable
inarectangular model by gradually building amodel by gluing together the segments
in L. Inthis section we will see how to extend amodel constructed from segments so
that one defect init is cured. In the next section we will see how continual curing of
defects eventually endsin amodel for ¢.

We will build amodel for ¢ by concentrating on labeled structures. A (25-) la-
beled structure is atuple (U, T, <, 1) where U isaset, (T, <) alinear irreflexive
ordered set, and A : (U x T) — 25, Traditionally such amap 1 has been called a
chronicle. Our construction will only involve labeled structures which are built from
segments. We introduce the following definition.

Definition 6.1 Thelabeled structure 7 = (U, T, <, A) isan (L-) segmented struc-
tureif and only if

Cl (T, <) isafinite suborder of the rationals of size at least two and
U isafinite set;
C2 foreach (u,t) € (U x T), A(u, t) isamaximally Boolean consistent set;
C3 foreach (u,t) € (U x T),if Ga € A(u,t) thenforal s> tinT,
Ga e A(u,s) and o € A(U, S);
C4 foreach (u,t) e (U xT),if He € A(u,t) thenfordl s<tinT,
Ho € A(u,s) and o € A(u, S);
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C5 foreach (u,t) e (U xT),if Do € A(u,t) thenfordl ve U, xei(y,t);

C6 foreach (u,t) e (U xT),Iif Qo € A(u,t) thenthereisv € U such that
o e Ay, 1),

C7 foreachs < tinT that are immediate neighbors, thereis (X, u,v) € L
andamap q: U — X such that

C7.1 gisonto,
C7.2 fordlueU, u(q(u) =A(u,s) andv(q(u)) = A(u, t).

Definition 6.2  For asegmented structure 7 = (U, T, <, A)and (u,t) e U x T, we
say that (u,t, Fa) isadefectin 7 if and only if Fa € A(u, t) but thereisnos > tin
T such that @ € A(u, s). Similarly we have defects (u, t, Px).

There are only finitely many defects in any segmented structure. In this section we
show how to cure defects. First we give the following definition:

Definition 6.3 A defect (u, t, x) inasegmented structure 7 = (U, T, <, 1) issaid
to be cured in segmented structure 77 = (U’, T/, </, M) ifand only if T € T’ and
thereisaninjectioni : U — U’ suchthatforalse T,ve U, 1/(i(v),s)) = A(v, S),
and (i(u), t, x) isnot adefectin 7”.

Claim 6.4 Under the assumption that L isan SSSfor ¢, we can cure any defect in
any L-segmented structure.

Supposethat thedefectis (u, t;, Fo). Dual defectsare deat with similarly. A simple
induction establishes that thereist € T suchthat t; < tand Fa € A(u, t) but either

1. tisthe <-maximal elementin (T, <) or
2. sistheimmediate successor of tin (T, <) and Fa ¢ A(u,s) and @ & A (U, S).

Itisclear that thereisadefect (u, t, Fo) in 7 and that curing this defect will also cure
the defect (u, t1, Far). The two cases are set out in the following two subsections.

6.1 The case of a maximal defect Suppose that s is the immediate predecessor
of tin (T, <). Thereissuch an s by C1. By condition C7, thereis (X, u,v) € L
andamapq: U — X suchthat gisontoandforal v e U, u(q(v)) = A(v, s) and
v(q(v)) = A(v, t). Thus Fa € n(q(u)). By condition B2 on L thereis (X', ', V') €
L, p € X x X and X' € X’ such that:

D1 foralye Xthereisy e X" suchthat p(y, y');
D2 foral y e X'thereisy e X suchthat p(y, y');
D3 if p(y, Y) thenv(y) = u/(y");
D4 p(q(u), x);
D5 o€V (X).
Choose an element t’ in the rationals greater than t. We define a new structure 7’ =
U, T, <, 1) by
1. U ={(vy)eUxX]|@),Y) e p
2. T'=Tul{t}
3. (T/, <’) isasuborder of the rationals;
4. M((v,y),r)=Ar(,r)forveU,y e X andr € T;



DECIDABLE TEMPORAL LOGIC OF PARALLELISM 429

5 M((vy),t)=v(y)forveUandy e X.

We will now check that 77 is segmented. C1 and C2 are clear.

For C3supposethat (v, Y) e U’, s <’ inT’,and Ga € A’ ((v, '), $1). Clearly
s1 € T sothat Ga € A(v, $1). Either s, € T when the result follows immediately
fromC3in 7 ors, =t'. Inthislatter case, A'((v, ¥'), ) = V' (Y). But either s; =t
when Ga € A(v, 1) or s; < t when condition C3 on 7 also givesus Ga € A(v, ). By
condition C7 applied to (X, u, v) and g as mentioned above, Ga € v(q(v)). Since
(v,¥Y)eU’, (q(v),Y) € pandso, by D3, Ga € 1/ (y). Finally coherency of the seg-
ment (X'u'V') givesusa € V(YY) = A (v, Y), ) and Ga € V(YY) =1 ((v, Y), S)
asrequired. Condition C4 is dual while conditions C5 and C6 are similarly straight-
forward.

For C7 there are two cases. If s; <’ s, are both in T then we find (any of) the
same (Xq, 1, v1) and qp : U —> X; aswe would use to show C7in 7. However
weuse p : U — X; given by gx((v, Y)) = g1(v). For the specific immediate
neighborst and t’ from T’ weuse (X', u’,v') andthemap g : U' — X' given by
g ((v,y)) =Y. Itiseasy to check that thiswill do.

We also defineamapi : U — U’. Leti(u) = (u,x). Thisisin U’ by DA4.
For each other v € U just chooseany y' € X’ such that (q(v), y') € pand puti(v) =
(v,y) e U'. Thereissuchay by D1. Itisclear that i isan injection. From the fact
that ' ((v, ¥), s1) = A(v,Sy) it isaso clear that i will do as the required injection
for extending our defective structure 7: forany v e U, forany s, € T, A(v, $1) =
A(i(), ).

Finally we check (i(u),t, Fa) isnot adefect of 7’. But thisisclear ast <t
anda € A/ (i(u),t") =A'((u,x),t') =v(X) by D5.

6.2 The case of a nonmaximal defect Wehaveu e U andt € T suchthat Fa €
A(u, t) but sisthe immediate successor of t in (T, <) and Fa € A(U,s) and @ &
A(u, s). By condition C7 thereis (X, u,v) €e Landamap q: U — X such that

1. qisonto;

2. foralueU, u(q(u)) = A(u,t) and v(q(u)) = A(u, S).
Thus Fa € n(q(u)) but Fa ¢ v(gq(u)) and o & v(g(u)). By condition B4 on L, there
is(X,u,vV)yeL (X', u',vhelL pC XxX,0C X' x X"andt C X" x X,
X" e X" and X' € X’ such that conditions B4.1 to B4.10 hold for x = q(u).

Choose an element t’ in the rational s between t and s. We define anew structure

T =U,T,<,1) by

1L U ={wY,y)eUxX xX"(q),Yy)ep, (Y,y)eoand (y’,q)) €
T}
T =Tu{t'};
(T’, <’) isasuborder of therationals;
MY, y),n=rwnforvelU,yeX,yeX andreT,
Ay, y),t)y=Vv(y)forveU,y e Xandy’ € X".

gk wbn

We can now check that 7”7 is segmented. This is quite straightforward in parts and
similar to the proof in the last subsection in other parts.
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We establish C6. Suppose (v/,r) e U x T" and Qo € A'(v',r). Say v/ =
(v, y,y) elUx X' x X" for (qv),y) € p, (Y,Y") e cand (Y, q(v)) € t. There
are two cases. First supposethatr € t. Thus Qo € A'(V,r) = A'((v, Y, Y’),r) =
A(v,r). But 7T satisfies C6 and (v,r) € U x T so thereis w € U such that o €
A(w,r). Now q(w) € X sowecanuse B4.1tofind Z € X' and Z’ € X” such that
Qw),Z) € p, (Z,7) e cand (Z/,q(w)) € z. Thenw’ = (w,Z,Z’") € U’ and
a € i(w,r)=A{(wZ,2Z'),r) = A(w,r). The other caseisthat r = t’. Thus
Qa € MW, ) =AM ((v,Y,y"),t') =1V (y). By the coherency of (X', u’,v"), we
have Z € X' suchthat « € v'(Z). By B4.2 thereisz € X and Z/ € X” such that
(z.Z)ep, (Z,7)) e cand (Z,2) € t. Asqisonto X, thereis w € U such that
qw) =2z Letw = (w,zZ") thena € V(Z) = M ((w, Z,Z),t') = M (w', 1) as
required. This establishes C6.

We will also defineamapi : U — U’. Leti(u) = (u, X, X”). Thisisin U’ by
B4.7, B4.8, and B4.9. For each other v € U just chooseany y' € X' and y” € X” such
that (q(v), y) € p, (Y, ¥") € oand (y’,q(v)) € Tand puti(v) = (v, ¥, y") e U".
There are such y', y” by B4.1. It isclear that i is an injection. From the fact that
AM((vY,Y"),s) = A(v, ) itisaso clear that i will do as the required injection
for extending our defective structure: for any v € U, forany s, € T, A(v, $1) =
M(iWw),s).

Finally we check that we have cured the defect (u,t, Fa): we show that
(i(u),t, Fa) isnot adefect of 77. But thisisclear ast <t' anda € A/(i(u),t") =
A ((u, X, X", t") =v(X) by B4.10.

7 Buildingamodel froman SSS  Inthissectionwewill show that any formulawith
an SSS also hasarectangular model. It ispossiblethat Fraissétechniques can be used
in combination with the defect-curing results of the previous sections. However, we
will use a straightforward step-by-step approach. We start with a small segmented
structure and build it up slowly, curing the defects successively. Finally, we extract a
model for the formulafrom the limit of the process. Suppose that L isan SSSfor ¢
and we wish to build amodel for ¢.

7.1 Theinduction By Blthereis (X, u,v) € L and x € X such that either ¢ €
u(x)org e v(x). DefineUg = X, To={0, 1} and <g= (0, 1) and Ao : (Ug x Tp) —>
25 by Ag(X, 0) = w(x) and Ag(X, 1) = v(X). Let Ty = (U, To, <o, A0). Then Tyisa
segmented structure. Wewill need to keep an account of the defectsin our succession
of structures. Number thedefectsin‘Zp 1, . . ., k. Itisclear that we have the condition
11 as defined below.

Our induction hypothesis 1, for an ordinal §, is that the following conditions
hold for each nwith0 < n < é.
1. 7, = (Up, Tn, <, Ap) isan L-segmented structure.
2. Wehaveaninjectionin_; : Up_1 —> Up,.
3. Tho1 C Th
4, Foreachu e U,_q,foreacht € T_1, An(in—1(u), t) = An_1(u, t).
5. The defects (if any) in 7, are numbered with distinct numbers greater than n.
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6. Foreachue U,_q,foreacht e T,_q,if (u, t, x) isadefect numbereddin Z,_1,
then either (in_1(u), t, x) isnot adefect in ‘7, or it isadefect numbered d in
Th.

7. I isasegmented structure, its defects are numbered > 0, and thereisty € Ty
and ug € Ug such that ¢ € Ag(Ug, tg).

We have already seen that we have I holding.

Suppose that we have constructed the 7y, i, and the numbering of defects so that
1¥ holds. Now check whether there is any defect numbered 8 in 7;_1. If thereis not
thenwejust let 75 = T5_1, is_1 betheidentity and we leave the numbering the same
inZs asitisin Z;_;.

If there is a defect (u, t, x) say, numbered § in Z5_,, then we use the defect-
curing technique described aboveto construct Z; and theinjectionis_; : Us_1 —> Us
so that (is_1(u),t, x) isnot adefect in 75. To number each defect in 73 we simply
check whether itis (is_1(v), s, ¥) for some defect (v, s, ¥) in Zs_4. If itis, then the
defect inherits the number from the defect in Z;_4. Note that as we have cured the
defect numbered §, then this number will not be inherited. After we have numbered
all theinherited defectsin thisway we give any new defects distinct unused numbers
greater than 8. After thisit is clear that we have |*+1 holding. Thus, by induction, we
have 1 holding.

7.2 Thelimit We may assume that all the U,s are distinct. Define ~ on (U, as
follows. Suppose u, v € | JUp, say that u € U, and v € Up,. Putu~ v if n < mand
vV=lim_1(m_2(...,in(u),...)) and close ~ under reflexivity and symmetry to make
it an equivalence relation. Note that we have the following.

H1 Foradln,foralue(JUy foralte T,if U, contains some v such that
u ~ v thenfor al m> n, Uy, contains some w such that u ~ w.

H2 Ifu~vandue Uy veUynthenforanyte T,N Ty, An(U, t) = Am(v, t).

H3 If (u,t, x) isadefect in 7, then thereisn > mand v € U, such that
u~vand (v, t, x) isnot adefectin 7.

These propertiesare simple consequences of |, To prove H3, suppose that the defect
(u, t, x) isnumbered k in 7. So k > m. By ¢ and a simple induction we can find
asmalest n > msuch that (in_1(in—2(...,im(U),...)),t, x) is not a defect in ‘Zy,.
There must be such an n for otherwise we would end up with a defect numbered k in
Ty contradicting | property 5). Now simply put v = in_1(in—2(..., im(W,...)).

We define the structure (E, T, <) by E= ((JUn)/ ~, T=UJTha € Qand <
being inherited from (Q, <). We also label this structure by A. For A (e, t) for any
ec Eandt e T, choosenlargeenough sothat U, containssomev € eandt € T,. This
can be done by conditionsH1 and 1 property 3. Now simply put A (e, t) = An(v, t).
Thisiswell defined by H2.

(E, T, <, A) hasthe following properties.

Gl (T, <) isalinear order.

G2 Each i(e t) isamaximaly Boolean consistent subset of S. Thisfollows
from the definition of A and C2.

G3 IfOu e A(et)thenforal € € E, a € A(€,t). Supposee, € e E,te T
and o € A(e t). Using H1 and |, choose m large enough so that
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t e Tnandthereisu, U e Uy withu € eand U’ € €. By the definition of
A Oa € An(u,t) = A(e,1). By 1, Ty = (U, T, <m, Am) Satisfies C1-7.
By C5, @ € Am(U/, 1). By the definition of A, « € A (€, t) asrequired.

G4 If Qa € A(e 1) thenthereis€ € E suchthat o € A (€, 1). Thisisproved
similarly to G3.

G5 If Gae A(et)thenfordlseT,ift <s ac A(e s). Suppose that
Ga € A(e,t) andt < s. Choose mlarge enough that s, t € Ty, and there
isu e Up such that u € e. By the definition of A, Ga € Am(u, t). By C1
and the definition of <, t <, sin (T, <m). By C3, @ € An(U, S).
By the definition of A, « € A (e, s) asrequired.

G6 We havethedua of G5 for Ha.

G7 If Fa € A(e,t) thenthereisse T, suchthatt < sand o € A(e, S).

Choosemlargeenough sothatt € Tr, and thereisu € Uy, with u € e. By the definition
of A, Fu € Am(u, t). Possibly, thereisse T, suchthatt <, sanda € An(U, S). Then
by C1 and the definition of <, t < sin (T, <) and by the definition of A, « € A (g, S)
asrequired.

Otherwise, (u,t, Fa) isadefect in 7. Thusby H3 thereisn > mand v € U,
suchthat v ~ uand (v, t, Fa) isnot adefect in 7,,. Sothereisse T, suchthatt <, s
and a € An(v,S). Then by C1 and the definition of <, t < sin (T, <) and by the
definition of A, o € A(e, S) asrequired.

G8 We havethe dua of G7 for Pa.
G9 ¢ e A([X0]. o).

Our model of ¢ will be T = (E, T, <, g) whereg : (E x T) — 2% isdefined by
gle,ty={pe L] pe r(et)}]. By G9, thereis ([Xg],to) € E x T suchthat ¢ isin
A([xa], to). The next result will show that (E, T, <, 9), [Xo], to E ¢.

Lemma7.l Forall e SforaleecE foralteT, ¢ e A(et)ifandonlyif

Proof: We proceed by induction on the construction of 1. The cases of atoms T,
=, and ¥ A x are trivial by the definition of g and G2. For Fv, suppose Fyr €
r(et). By G7thereissetsuchthatt < sand ¢ € A(e, s). By the inductive hy-
pothesis, 7,e,skE= ¥ s0 7, et = Fy. Conversely, suppose 7, e, t = Fy so there
isse Twitht < sand 7, e, s = . By theinductive hypothesis, ¢ € A(e, s). By G2
and G5, Fyr € A(e, t). The case of Py isanaogous.

For O, suppose Oy € A(e t). By G4 thereis€ € E such that ¢ € A (€, t).
By the inductive hypothesis, 7,€,t = ¢ s0 7,e,t &= Oy. Conversay, suppose
T,e,t = Oy sothereis € € E with 7, €,t = v. By the inductive hypothesis,
Y el(€,t). By G2and G3, Oy € A(e, 1). O

8 Decidability Before summarizing our decision procedure, we need to check afew
facts about brief models.

Lemma8.1 ¢ hasabrief model if and only if thereisa set A € 25 such that

1. each a e Aisamaximally Boolean consistent set;
2. no Faor Paisinanyac A;
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3. if o € athenfor all be Awehaveo € b;
4. ifae Aand Qa € athenthereisb € Asuchthat o € b;
5. thereisa e Awithg € a.

Proof: For the forward direction, say (U, {to}, @,0),Ug, 1o &= ¢. Let A =
{Ilull | ue U} whereforeachu e U, |ju|| = {« € S| (U, {to}, &, 9), u, tp = «}. Con-
versaly, letU = A, T = {0}, < beempty anddefinegtotake (a,0)to{pe L | p € a}.

O

Since there are only afinite number of subsets of 25, it is straightforward to describe
an algorithm which decides whether ¢ has abrief model. We are now able to present
adeciding algorithm for the satisfiability of formulasin the logic FPJ.

Theorem 8.2 Satisfiability of FP{ formulasis decidable.

Proof:  Suppose we are to check whether ¢ has a model. First use the algorithm
above to see whether ¢ has a brief model. If not, then proceed as follows.

Suppose that the complexity (Ilength) of ¢ isn. Thus the size of Sis at most
2n. There are at most 22" maximally Boolean consistent subsets of S. There are at
most 22" different p-segments (X, i, v)—up to difference in X. Using an idea of
Pratt from [[L6], we can start with this set of all different ¢-segments and gradually
whittle it down to an SSSfor ¢ by throwing away incoherent or incurable segments.
Eventually welose any withessfor ¢ in the set of segments (in which casethereisno
SSSfor ¢) or the process reaches a fixed set which will be an SSSfor ¢.

If thereisan SSSfor ¢ then ¢ hasamodel. If thereis no SSSfor ¢ nor a brief
model of ¢ then ¢ is not satisfiable. O

Of course, this may not be the most efficient decision procedure possible. In [&], a
related logic (the temporal-knowledge logic of one agent who knows the time but
neither learns nor forgets) over natural numberstime, isshown to have an EXPSPACE-
hard decision problem. It might be possible to use the techniques of these authors to
show that our decision problem is also EXPSPACE-hard, but finding matching lower
and upper bounds on its complexity will have to remain as an open problem.

9 Nofinitemodel property Inthissectionwewill show that thelogic FP{ doesnot
have thefinite model property. Thiswill show that the mosaic method for proving de-
cidability is stronger than the traditional method of using the finite model property.
Having to use other decidability techniques is not entirely new to temporal logic—
for example, many temporal logics over the integers or natural numbers have no fi-
nite models and we usually resort to automata techniques to show their decidability.
However, mosaics look even more like finite models than automata do and so it is
worth presenting the result of this section to demonstrate a clear distinction between
the techniques.

First we define our terms. We have already met (valued) rectangular structures:
that is, (U, T, <, g) in which U is a nonempty set, (T, <) is a nonempty linear ir-
reflexive order and g : U x T — 2%, Recall that aformula ¢ of FP{ is a validity
if and only if for every rectangular structure (U, T, <, ), for every u € U, for every
teT,wehave (U, T, <,0),u,t k= o.
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Now we introduce more general structures. Say that M = (W, «, p, 0, g) isa
(valued) Kripke structure (for FPQ) if and only if W is a nonempty set, , p,o C
W x Wand g : W — 2%, We define truth of FP{-formulas at worlds in Kripke
structures by using 7, p, and o as the accessibility relations for F, P, and ¢ in the
usual way. For example, we have clauses

1. M, wl= piff pe g(w);
2. M, w = Fa iff thereisw’ € W such that (w, w’) e rand M, v’ = «;
3. M, w = Qu iff thereisw’ € W such that (w, w’) € o0 and M, w’ |= «.

We say that M isfinite if and only if W is. We say that the Kripke structure M is
amodel of FP{ if and only if for every validity ¢ of FP) and for every w € W we
have M, w = ¢. We say that the logic FP{ hasthe finite model property if and only
if for every formula ¢ of FP{ which isnot avalidity thereisafinite Kripke structure
M which isamode of FP{ but for which thereis w € W with M, w = —¢. Note
that since we can easily axiomatize FP{ using an IRR-stylerule (seethelong version
[18]) then it would follow that FP{ is decidable if we could show that FP{ has the
finite model property. Now we show the following theorem.

Theorem 9.1  FP{ does not have the finite model property.

Proof: Letyg=qgA H—-gandforeachi > 0, let yj, 1 = Py A HH—;. In fact
we will show that the formula

¢ =FT AGO(YoA Fy)

does not have afinite Kripke model in which all the validities of FP{ arevalid. Note
that ¢ is satisfiable in arectangular structure so —¢ isnot avalidity.

Suppose for contradiction that M = (W, 7, p, o, 9) is afinite Kripke model of
FP¢ such that thereis w € W with M, w = ¢. First, it is clear that thereis wg € W
with M, wo = Y. We aso have (w, wo) € 7 o o. We will show by induction that
for eachi > O thereis some w; € W with

1. M, w =y and

2. (w, wj) € (noaoni).

To help we will define xo = O (Yo A Fy1) and for each i > 0 define xj.1 = Gy;.
Notethat Gyg —> GOy isavalidity of FP{ for any i > 0.

We have already established the inductive property for i = 0. Now suppose that
itistruefor somei > 0. Since M isamodel of FP) wehave M, w = GOx;. Since
(w, wi) € (Tooon') wethushave M, wi = O (Yo A Fir1) aswell as the assumed
M, wi = . Another validity of FP( is

(O(Yo A Fy1) A i) — Ffiga.

Thus M, wi = Fi 1. Thisgives usthe required wi,; € W.

Now that we have our set {wili > 0} of elements of W we are finished when we
show that they are all distinct for i > 0. Assume for contradictionthat 0 < i < | but
wi = wj. Thus M, wi = Pyj_1 A HH=yi_1. Thusthereisv e W with M, v |=
Vj—1 A H=vi_1. However, itisavalidity of FP{ that ;1 — P_1 S0 we have
our contradiction. O
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10 Conclusion Although the logic FP¢$ is not new, we have been able, using the
new mosai ¢ techniques, to provide thefirst decidability result for it. Aswe have aso
shown that the logic does not have the finite model property we can conclude that
the mosaic method provides useful new tools for investigating modal and temporal
logics.

Aswe have seen there are many related logics so it isvery possible that applying
the mosaic method in similar ways will provide avery fruitful research opportunity.
One open problem which is very close to the problem considered in this paper con-
cernsthe use of the horizontal difference operator D where the semantic clausefor D
is

M, u,t = Da iff thereisv € U suchthat v £ uand M, v, t = a.

It seems that the addition of the D operator to our rectangular logic resultsin asubtly
more complicated logic for which no decision procedure is known.

Another open problem closely connected with the results here concernsthe com-
plexity of the decision procedure. Thealgorithm presentedin SectionBlshighly com-
plex but it isvery probable that much less complex procedures exist. We have briefly
described a double exponentially complex procedure and mentioned some possible
techniques for finding an EXPSPACE lower bound. An existing lower bound on the
complexity isgiven by the recent result in Marx [[13]in which it is shown (also using
mosaic techniques) that the product logic of S5 and S5 is nexptime compl ete.
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