Skip to main content
Log in

Does a Computer Have an Arrow of Time?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Schulman (Entropy 7(4):221–233, 2005) has argued that Boltzmann’s intuition, that the psychological arrow of time is necessarily aligned with the thermodynamic arrow, is correct. Schulman gives an explicit physical mechanism for this connection, based on the brain being representable as a computer, together with certain thermodynamic properties of computational processes. Hawking (Physical Origins of Time Asymmetry, Cambridge University Press, Cambridge, 1994) presents similar, if briefer, arguments. The purpose of this paper is to critically examine the support for the link between thermodynamics and an arrow of time for computers. The principal arguments put forward by Schulman and Hawking will be shown to fail. It will be shown that any computational process that can take place in an entropy increasing universe, can equally take place in an entropy decreasing universe. This conclusion does not automatically imply a psychological arrow can run counter to the thermodynamic arrow. Some alternative possible explanations for the alignment of the two arrows will be briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schulman, L.S.: A computer’s arrow of time. Entropy 7(4), 221–233 (2005). http://www.mdpi.org/entropy/htm/e7040221.htm

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Hawking, S.W.: The no boundary condition and the arrow of time. In: Halliwell, J.J., Perez-Mercader, J., Zurek, W.H. (eds.) Physical Origins of Time Asymmetry. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  3. Boltzmann, L.: Lectures on Gas Theory, 1896–1898. Dover, New York (1995)

    Google Scholar 

  4. Reichenbach, H.: The Direction of Time. University of California Press, Berkeley (1956) (NB. My copy is a Dover, New York, reprint from 1999)

    Google Scholar 

  5. Horwich, P.: Asymmetries in Time. MIT, Cambridge (1987)

    Google Scholar 

  6. Sklar, L.: Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  7. Earman, J.: The “Past Hypothesis”: Not even false. Stud. Hist. Philos. Mod. Phys. 37(3), 399–430 (2006)

    Article  MathSciNet  Google Scholar 

  8. Maudlin, T.: Remarks on the passing of time. Proc. Aristot. Soc. 102(3), 237–252 (2002)

    Article  Google Scholar 

  9. Sklar, L.: Philosophy and Spacetime Physics. University of California, Cambridge (1985)

    Google Scholar 

  10. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961). Reprinted in [24, 36]

    Article  MATH  MathSciNet  Google Scholar 

  11. Hawking, S.W.: Arrow of time in cosmology. Phys. Rev. D 32(10), 2489–2495 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  12. Hawking, S.W.: The direction of time. New Sci. 115, 46–49 (1987)

    ADS  Google Scholar 

  13. Albert, D.Z.: Time and Chance. Harvard University Press, Cambridge (2001)

    Google Scholar 

  14. Schulman, L.S.: Time’s Arrow and Quantum Measurement. CUP, Cambridge (1997)

    Google Scholar 

  15. Zeh, H.D.: Remarks on the compatibility of opposite arrows of time. Entropy 7(4), 199–207 (2005). http://www.mdpi.org/entropy/htm/e7040199.htm

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Schulman, L.S.: Two-way thermodynamics: could it really happen? Entropy 7(4), 208–220 (2005). http://www.mdpi.org/entropy/htm/e7040208.htm

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Short, T., Ladyman, J., Groisman, B., Presnell, S.: The connections between logical and thermodynamical irreversibility. Stud. Hist. Philos. Mod. Phys. 38(1), 58–79 (2007). http://philsci-archive.pitt.edu/archive/00002374/

    Article  MathSciNet  Google Scholar 

  18. Maroney, O.J.E.: The (absence of a) relationship between thermodynamic and logical reversibility. Stud. Hist. Philos. Mod. Phys. 36, 355–374 (2005). physics/0406137

    Article  MathSciNet  Google Scholar 

  19. Maroney, O.J.E.: Generalising Landauer’s Principle. Phys. Rev. E 79, 031105-1 (2009). quant-ph/0702094

    Article  MathSciNet  ADS  Google Scholar 

  20. Caves, C.M.: Quantitative limits on the ability of a Maxwell demon to extract work from heat. Phys. Rev. Lett. 64(18), 2111–2114 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Caves, C.M.: Information and entropy. Phys. Rev. E 47(6), 4010–4017 (1993). Reprinted in [24]

    Article  MathSciNet  ADS  Google Scholar 

  22. Piechocinska, B.: Information erasure. Phys. Rev. A 61, 062314 (2000). Reprinted in [24]

    Article  MathSciNet  ADS  Google Scholar 

  23. Bub, J.: Maxwell’s demon and the thermodynamics of computation. Stud. Hist. Philos. Mod. Phys. 32, 569–579 (2001). quant-ph/0203017

    Article  MathSciNet  Google Scholar 

  24. Leff, H.S., Rex, A.F. (eds.): Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing. IoP, Bristol (2003). ISBN 0750307595

    Google Scholar 

  25. Bennett, C.H.: Notes on Landauer’s principle, reversible computation, and Maxwell’s demon. Stud. Hist. Philos. Mod. Phys. 34, 501–510 (2003). physics/0210005

    Article  Google Scholar 

  26. Earman, J., Norton, J.D.: Exorcist XIV: The wrath of Maxwell’s demon. Part II: From Szilard to Landauer and beyond. Stud. Hist. Philos. Mod. Phys. 30(1), 1–40 (1999)

    Article  MathSciNet  Google Scholar 

  27. Maroney, O.J.E.: Information and Entropy in Quantum Theory. Ph.D. Thesis, Birkbeck College, University of London (2002). quant-ph/0411172

  28. Norton, J.D.: Eaters of the lotus: Landauer’s principle and the return of Maxwell’s demon. Stud. Hist. Philos. Mod. Phys. 36, 375–411 (2005). http://philsci-archive.pitt.edu/archive/00001729/

    Article  MathSciNet  Google Scholar 

  29. Turgut, S.: Relations between entropies produced in non-deterministic processes. Phys. Rev. E 79, 041102 (2009)

    Article  ADS  Google Scholar 

  30. Gibbs, J.W.: Elementary Principles in Statistical Mechanics. New York-London (1902) (NB. My copy is an Ox Bow Press, Woodbridge, Connecticut, reprint from 1981)

  31. Tolman, R.C.: The Principles of Statistical Mechanics. Oxford University Press, Oxford (1938) (NB. My copy is a Dover, New York, reprint from 1979)

    Google Scholar 

  32. Partovi, M.H.: Irreversibility, reduction and entropy increase in quantum measurements. Phys. Lett. A 137(9), 445–450 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  33. Loewer, B.: Counterfactuals and the second law. In: Price, H., Corry, R. (eds.) Causality, Physics, and the Constitution of Reality: Russell’s Republic Revisited. Oxford University Press, Oxford (2007)

    Google Scholar 

  34. Price, H.: Time’s Arrow and Archimedes’ Point. Oxford University Press, Oxford (1996)

    Google Scholar 

  35. Frisch, M.: Does a low-entropy constraint prevent us from influencing the past? Philosophy of Science e-print Service (2007). http://philsci-archive.pitt.edu/archive/00003390/

  36. Leff, H.S., Rex, A.F. (eds.): Maxwell’s Demon. Entropy, Information, Computing. Adam Hilger, Bristol (1990). ISBN 0-7503-0057-4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen J. E. Maroney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maroney, O.J.E. Does a Computer Have an Arrow of Time?. Found Phys 40, 205–238 (2010). https://doi.org/10.1007/s10701-009-9386-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9386-6

Navigation