Skip to main content

Emotions: The Shared Heritage of Animals and Humans

  • Chapter
  • First Online:
Emotions as Bio-cultural Processes

Abstract

The development of mammals from simple to complexly organized species has been delineated, and it is assumed that the expansion of the cerebral cortex correlates in particular with the ability to perform complex behavioral acts. On the anatomical side, particular emphasis is laid on structures of the frontal lobes and the limbic system; and on the behavioral side, emotional and intellectual functions are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstrong, E. (1982). Mosaic evolution in the primate brain: Differences and similarities in the hominoid thalamus. In E. Armstrong & D. Falk (Eds.), Primate brain evolution (pp. 131–161). New York: Plenum Press.

    Google Scholar 

  • Armstrong, E. (1986). Enlarged limbic structures in the human brain: the anterior thalamus and medial mamillary body. Brain Research, 362, 394–397.

    Article  PubMed  Google Scholar 

  • Armstrong, E., & Falk, D. (Eds.) (1982). Primate brain evolution. Methods and concepts. New York: Plenum Press.

    Google Scholar 

  • Benes, F. M. (2001). The development of prefrontal cortex: the maturation of neurotransmitter systems and their interactions. In C. A. Nelson & M. Luciana (Eds.), Handbook of developmental cognitive neuroscience (pp. 79–92). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Bingham, V. P. (1992) The importance of comparative studies and ecological validity for understanding hippocampal structure and cognitive function. Hippocampus, 2, 213–220.

    Article  Google Scholar 

  • Bonin, G. von, & Bailey, P. (1961). Pattern of the cerebral isocortex. In H. Hofer, A. H. Schulz & D. Starck (Eds.), Primatologia II (2. Lieferung). Basel: Karger.

    Google Scholar 

  • Bourgeois, J.-P., Goldman-Rakic, P. S., & Rakic, P. (2000). Formation, elimination, and stabilization of synapses in the primate cerebral cortex. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences (2nd ed.) (pp. 45–53). Cambridge, MA: MIT Press.

    Google Scholar 

  • Brand, M., & Markowitsch, H. J. (2003). The principle of bottleneck structures. In R. H. Kluwe, G. Lüer, & F. Rösler (Eds.), Principles of learning and memory (pp. 171–184). Basel: Birkhäuser.

    Chapter  Google Scholar 

  • Broca, P. (1878). Anatomie comparée des circonvolutions cérébrales. Le grand lobe limbique et la scissure limbique dans le série des mammifères. Revue Anthropologique, 2, 385–498.

    Google Scholar 

  • Brodal, P. (1982). Neurological anatomy in relation to clinical medicine (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth.

    Google Scholar 

  • Buchsbaum, M. (2005, September). White matter volume and diffusion tensor imaging in the schizophrenia and bipolar affective disorder spectrum. Paper presented at the second ECNS-ISNIP Joint Meeting, Munich.

    Google Scholar 

  • Cajal, S. R. Y. (1909). Histologie du systeme nerveux de l’homme et de vertébrès. Paris: Maloine.

    Google Scholar 

  • Cartwright, J. (2000). Evolution and human behaviour. New York: Palgrave.

    Google Scholar 

  • Damasio, A. R., & Van Hoesen, G. W. (1983). Emotional disturbances associated with focal lesions of the limbic frontal lobe. In K. M. Heilman & P. Satz (Eds.), Neuropsychology of human emotion (pp. 85–109). New York: Guilford Press.

    Google Scholar 

  • Dercum, F. X. (1925). The thalamus in the physiology and pathology of the mind. A.M.A. Archives of Neurology and Psychiatry, 14, 289–302.

    Google Scholar 

  • Donald, M. (2001). A mind so rare. The evolution of human consciousness. New York: W. W. Norton.

    Google Scholar 

  • Flechsig, P. (1896a). Die Lokalisation der geistigen Vorgänge, insbesondere der Sinnesempfindungen des Menschen. Leipzig: Veit.

    Google Scholar 

  • Flechsig, P. (1896b). Gehirn und Seele. Leipzig: Veit.

    Google Scholar 

  • Fuster, J. Q. (1997). The prefrontal cortex. Anatomy, physiology and neuropsychology (3rd ed.). New York: Raven Press.

    Google Scholar 

  • Galaburda, A. M., LeMay, M., Kemper, T. L., & Geschwind, N. (1978). Right-left asymmetries in the brain. Science, 199, 852–856.

    Article  PubMed  Google Scholar 

  • Galaburda, A. M., & Pandya, D. N. (1982). Role of architectonics and connections in the study of primate brain evolution. In E. Armstrong, & D. Falk (Eds.), Primate brain evolution (pp. 203–216). New York: Plenum Press.

    Google Scholar 

  • Gannon, P. J., Holloway, R. L., Broadfield, D. C., & Braun, A. R. (1998). Asymmetry of chimpanzee planum temporale: Humanlike pattern of Wernicke’s brain language area homolog. Science, 279, 220–222.

    Article  PubMed  Google Scholar 

  • Glezer, I. L., Jacobs, M. S., & Morgane, P. J. (1988). Implications of the “initial brain” concept for brain evolution in Cetacea. Behavioral and Brain Sciences, 11, 75–116.

    Article  Google Scholar 

  • Grüsser, O.-J. (1988). Die phylogenetische Hirnentwicklung und die funktionelle Lateralisation der menschlichen Großhirnrinde. In G. Oepen (Ed.), Psychiatrie des rechten und linken Gehirns: Neuropsychologische Ansätze zum Verständnis von “Persönlichkeit,” “Depression” und “Schizophrenie” (pp. 34–50). Köln: Deutscher Ärzte-Verlag.

    Google Scholar 

  • Hassler, R. (1959). Anatomy of the thalamus. In G. Schaltenbrand & P. Bailey (Eds.), Introduction to stereotaxis with an atlas of the human brain (pp. 230–290). Stuttgart: Thieme.

    Google Scholar 

  • Hassler, R. (1982). Architectonic organization of the thalamic nuclei. In G. Schaltenbrand, & A.E. Walker (Eds.), Stereotaxy of the human brain (pp. 140–180). Stuttgart: Thieme.

    Google Scholar 

  • Heath, R. G. (1986). The neural substrate of emotion. In R. Plutchik, & H. Kellerman (Eds.), Emotion. Theory, research, and experience (pp. 3–35). Orlando, FL: Academic Press.

    Google Scholar 

  • Herz, R. S., & Engen, T. (1996). Odor memory: Review and analysis. Psychonomic Bulletin and Review, 3, 300–313.

    Article  Google Scholar 

  • Hodos, W. (1988). Comparative neuroanatomy and the evolution of intelligence. In H. J. Jerison, & I. Jerison (Eds.), Intelligence and evolutionary biology (pp. 93–107). Berlin: Springer.

    Chapter  Google Scholar 

  • Hodos, W., & Campbell, C. B. G. (1969). Scala naturae: Why there is no theory in comparative psychology. Psychological Review, 76, 337–350.

    Article  Google Scholar 

  • Hodos, W., & Campbell, C. B. G. (1991). Evolutionary scales and comparative studies of animal cognition. In R. P. Kesner & D. S. Olton (Eds.), Neurobiology of comparative cognition (pp. 1–20). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Hopf, A. (1956). Volumetrische Untersuchungen zur vergleichenden Anatomie des Thalamus. Journal für Hirnforschung, 8, 25–38.

    Google Scholar 

  • Hopkins, W. D., Wesley, M. J., Izard, M. K., & Hook, M. (2004). Chimpanzees (Pan troglodytes) are predominantly right-handed: replication in three populations of apes. Behavioral Neuroscience, 118, 659–663.

    Article  PubMed  Google Scholar 

  • Jerison, H. J. (1973). The evolution of the brain and intelligence. New York: Academic Press.

    Google Scholar 

  • Kaminski, J., Call, J., & Fischer, J. (2004). Word learning in a domestic dog: evidence for “fast mapping”. Science, 304, 1682–1683.

    Article  PubMed  Google Scholar 

  • Keenan, J. P., Wheeler, M., Gallup, Jr G. G., & Pascual-Leone, A. (2000). Self-recognition and the right prefrontal cortex. Trends in Cognitive Sciences, 4, 338–344.

    Article  PubMed  Google Scholar 

  • Kleist, K. (1934). Gehirnpathologie. Leipzig: Barth.

    Google Scholar 

  • Knight R. T., & Grabowecky M. (2000). Prefrontal cortex, time, and consciousness. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences, (2nd ed.) (pp. 1319–1339). Cambridge, MA: MIT Press.

    Google Scholar 

  • LeDoux, J. E. (1987). Emotion. In F. Plum (Ed.), Handbook of physiology: Section 1. The nervous system: Vol. V. Higher functions of the brain (pp. 419–460). Bethesda: American Physiological Society.

    Google Scholar 

  • LeDoux, J. E. (1989). Cognitive-emotional interactions in the brain. Cognition and Emotion, 3, 267–289.

    Article  Google Scholar 

  • LeMay, M. (1976). Morphological cerebral asymmetries of modern man, fossil man, and nonhuman primate. Annals of the New York Academy of Sciences, 280, 349–366.

    Article  PubMed  Google Scholar 

  • Macchi, G. (1989). Anatomical substrate of emotional reactions. In L. Squire, & G. Gainotti (Eds.), Handbook of neuropsychology, Vol. 3 (pp. 283–304). Amsterdam: Elsevier.

    Google Scholar 

  • MacLean, P. D. (1970). The triune brain, emotion, and the scientific bias. In F. O. Schmitt (Ed.), The neurosciences: Second study program (pp. 336–349). New York: Rockefeller University Press.

    Google Scholar 

  • MacLean, P. D. (1972). Cerebral evolution and emotional processes. Annals of the New York Academy of Sciences, 193, 137–149.

    Article  PubMed  Google Scholar 

  • MacLean, P. D. (1990). The triune brain in evolution. New York: Plenum Press.

    Google Scholar 

  • Markowitsch, H. J. (1988). Anatomical and functional organization of the primate prefrontal cortical system. In H. D. Steklis & J. Erwin (Eds.), Comparative primate biology, Vol. IV: Neurosciences (pp. 99–153). New York: Alan R. Liss.

    Google Scholar 

  • Markowitsch, H. J. (1992). Intellectual functions and the brain. An historical perspective. Toronto: Hogrefe & Huber.

    Google Scholar 

  • Markowitsch H. J. (1999). The limbic system. In R. Wilson, & F. Keil (Eds.), The MIT encyclopedia of cognitive science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Markowitsch, H. J. (2000). Memory and amnesia. In M.-M. Mesulam (Ed.), Principles of cognitive and behavioral neurology (pp. 257–293). New York: Oxford University Press.

    Google Scholar 

  • Markowitsch, H. J. (2005). The neuroanatomy of memory. In P. Halligan, & P. Wade (Eds.). The effectiveness of rehabilitation for cognitive deficits (pp. 105--114). Oxford: Oxford University Press.

    Google Scholar 

  • Markowitsch, H. J., Emmans, D., Irle, E., Streicher, M., & Preilowski, B. (1985). Cortical and subcortical afferent connections of the primate’s temporal pole: A study of rhesus monkeys, squirrel monkeys, and marmosets. Journal of Comparative Neurology, 242, 425–458.

    Article  PubMed  Google Scholar 

  • Nauta, W. J. H. (1958). Hippocampal projections and related neural pathways to the mid-brain in the cat. Brain, 81, 319–341.

    Article  PubMed  Google Scholar 

  • Nauta, W. J. H. (1962). Neural associations of the amygdaloid complex in the monkey. Brain, 85, 505–520.

    Article  PubMed  Google Scholar 

  • Nauta, W. J. H. (1979). Expanding borders of the limbic system concept. In T. Rasmussen, & R. Marino (Eds.), Functional neurosurgery (pp. 7–23). New York: Raven Press.

    Google Scholar 

  • Nelson, K. (2002). Entering a community of minds: An experimental approach to “Theory of Mind”. Human Development, 191, 1–23.

    Google Scholar 

  • Nieuwenhuys, R. (1996). The greater limbic system, the emotional motor system and the brain. In G. Holstege, R. Bandler, & C. B. Saper (Eds.), The emotional motor system (Progress in Brain Research, Vol. 107, pp. 551–580). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Nottebohm, F. (1981). Origins and mechanisms in the establishment of cerebral dominance. In M. S. Gazzaniga (Ed.), Handbook of behavioral neurology: Vol. 2. Neuropsychology (pp. 295–344). New York: Plenum Press.

    Google Scholar 

  • Papez, J. W. (1937). A proposed mechanism of emotion. Archives of Neurology and Psychiatry, 38, 725–743.

    Google Scholar 

  • Preuss, T. M. (1995a). Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered. Journal of Cognitive Neuroscience, 7, 1–24.

    Google Scholar 

  • Preuss, T. M. (1995b). The argument from animals to humans in cognitive neuroscience. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 1227–1241). Cambridge, MA: MIT Press.

    Google Scholar 

  • Preuss, T. M., & Kaas, J. H. (1999). Human brain evolution. In M. J. Zigmond, F. E. Bloom, S. C. Landis, J. L. Roberts, & L. R. Squire (Eds.), Fundamental neuroscience (pp. 1283–1311). San Diego, CA: Academic Press.

    Google Scholar 

  • Pritzel, M., Brand, M., & Markowitsch, H. J. (2003). Gehirn und Verhalten. Heidelberg: Spektrum Akademische Verlagsanstalt.

    Book  Google Scholar 

  • Rapoport, S. I. (1990). Integrated phylogeny of the primate brain, with special reference to humans and their diseases. Brain Research Reviews, 15, 267–294.

    Article  PubMed  Google Scholar 

  • Rubens, A. B. (1977). Asymmetries of human cerebral cortex. In S. Harnad, R. W. Doty, L. Goldstein, J. Jaynes, & G. Krauthamer (Eds.), Lateralization in the nervous system (pp. 503–516). New York: Academic Press.

    Google Scholar 

  • Sanides, F. (1964). The cyto-myeloarchitecture of the human frontal lobe and its relation to phylogenetic differentiation of the cerebral cortex. Journal für Hirnforschung, 6, 269–292.

    Google Scholar 

  • Sarter, M., & Markowitsch, H. J. (1985). The involvement of the amygdala in learning and memory: A critical review with emphasis on anatomical relations. Behavioral Neuroscience, 99, 342–380.

    Article  PubMed  Google Scholar 

  • Sims, K. S., & Williams, R. S. (1990). The human amygdaloid complex: a cytologic and histochemical atlas using Nissl, myelin, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining. Neuroscience, 36, 449–472.

    Article  PubMed  Google Scholar 

  • Stuss, D. T., & Anderson, V. (2004). The frontal lobes and theory of mind: developmental concepts from adult focal lesion research. Brain and Cognition, 55, 69–83.

    Article  PubMed  Google Scholar 

  • Stuss, D. T., & Levine, B. (2002). Adult clinical neuropsychology. Lessons from studies of the frontal lobes. Annual Review of Psychology, 53, 401–433.

    Article  PubMed  Google Scholar 

  • Stuss, D. T., Gallup, Jr G. G., & Alexander, M. P. (2001). The frontal lobes are necessary for ‘theory of mind’. Brain, 124, 279–286.

    Article  PubMed  Google Scholar 

  • Teuber, H.-L. (1964). The riddle of the frontal lobe function in man. In J. M. Warren & K. Akert (Eds.), The frontal granular cortex and behavior (pp. 410–444). New York: McGraw Hill.

    Google Scholar 

  • Teuber, H.-L. (1972). Unity and diversity of frontal lobe functions. Acta Neurobiologiae Experimentalis, 32, 615–656.

    PubMed  Google Scholar 

  • Tomasello, M. (2000). The cultural origins of human cognition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Tulving, E. (2005). Episodic memory and autonoesis: Uniquely human? In H. S. Terrace & J. Metcalfe (Eds.). The missing link in cognition: Self-knowing consciousness in man and animals (pp. 3–56). New York: Oxford University Press.

    Google Scholar 

  • Tulving, E., & Markowitsch, H. J. (1998). Episodic and declarative memory: Role of the hippocampus. Hippocampus, 8, 198–204.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. Markowitsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Markowitsch, H.J. (2009). Emotions: The Shared Heritage of Animals and Humans. In: Markowitsch, H., Röttger-Rössler, B. (eds) Emotions as Bio-cultural Processes. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09546-2_5

Download citation

Publish with us

Policies and ethics