Skip to main content
Log in

Nonideal quantum measurements

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A partial ordering in the class of observables (∼ positive operator-valued measures, introduced by Davies and by Ludwig) is explored. The ordering is interpreted as a form of nonideality, and it allows one to compare ideal and nonideal versions of the same observable. Optimality is defined as maximality in the sense of the ordering. The framework gives a generalization of the usual (implicit) definition of self-adjoint operators as optimal observables (von Neumann), but it can, in contrast to this latter definition, be justified operationally. The nonideality notion is compared to other quantum estimation theoretic methods. Measures for the amount of nonideality are derived from information theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Allcock,Ann. Phys. (N.Y.) 53, 311 (1969).

    Google Scholar 

  2. K. L. Chung,Markov Chains with Stationary Transition Probabilities, 2nd edn. Springer, Berlin 1967).

    Google Scholar 

  3. E. Davies,J. Funct. Anal. 6, 318 (1970).

    Google Scholar 

  4. E. Davies,Quantum Theory of Open Systems (Academic, London, 1976).

    Google Scholar 

  5. E. Davies and J. Lewis,Commun. Math. Phys. 17, 239 (1969).

    Google Scholar 

  6. P. Dirac,The Principles of Quantum Mechanics (Clarendon, Oxford, 1930).

    Google Scholar 

  7. C. Helstrom,Quantum Detection and Estimation Theory (Academic, New York, 1976).

    Google Scholar 

  8. A. Holevo,Trans. Mosc. Math. Soc. 26, 133 (1972).

    Google Scholar 

  9. A. Holevo,Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982).

    Google Scholar 

  10. G. Jameson,Ordered Linear Spaces (Lecture Notes in Mathematics, Vol. 141) (Springer, New York, 1970).

    Google Scholar 

  11. P. Kelly and M. Weiss,Geometry and Convexity (Wiley, New York, 1979).

    Google Scholar 

  12. P. Kruszynski and W. de Muynck,J. Math. Phys. 28, 1761 (1987).

    Google Scholar 

  13. R. Loudon,Quantum Theory of Light, 2nd edn. (Clarendon, Oxford, 1983).

    Google Scholar 

  14. G. Ludwig,Foundations of Quantum Mechanics, Vol. I (Springer, Berlin, 1983).

    Google Scholar 

  15. H. Martens and W. de Muynck, “The inaccuracy principle,”Found. Phys. 20, 357 (1990).

    Google Scholar 

  16. R. McEliece,The Theory of Information and Coding (Addison-Wesley, London, 1977).

    Google Scholar 

  17. W. de Muynck and J. Koelman,Phys. Lett. A 98, 1 (1983).

    Google Scholar 

  18. J. von Neumann,Mathematische Grundlagen der Quantenmechanik (Springer, New York, 1932, 1982).

    Google Scholar 

  19. J. Ortega,Matrix theory (Plenum, New York, 1987).

    Google Scholar 

  20. E. Prugovečki,J. Phys. A 10, 543 (1977).

    Google Scholar 

  21. E. Prugovečki,Stochastic Quantum Mechanics and Quantum Spacetime. (Reidel, Dordrecht, 1984).

    Google Scholar 

  22. J. Schwinger,Proc. Natl. Acad. Sci. USA 46, 570 (1960).

    Google Scholar 

  23. F. Schroeck,Int. J. Theor. Phys. 28, 247 (1989).

    Google Scholar 

  24. C. Shannon,Bell Syst. Tech. J. 27, 379 (1948).

    Google Scholar 

  25. C. Shannon,Inform. Control 1, 390 (1958).

    Google Scholar 

  26. J. Uffink and J. Hilgevoord,Physica B 151, 309 (1988).

    Google Scholar 

  27. W. Wootters,Phys. Rev. D 19, 473 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martens, H., de Muynck, W.M. Nonideal quantum measurements. Found Phys 20, 255–281 (1990). https://doi.org/10.1007/BF00731693

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731693

Keywords

Navigation