Skip to main content
Log in

The Development of Form: Causes and Consequences of Developmental Reprogramming Associated with Rapid Body Plan Evolution in the Bilaterian Radiation

  • Thematic Issue Article: Emergence of Shape
  • Published:
Biological Theory Aims and scope Submit manuscript

Abstract

Organismal form arises by the coordinated movement, arrangement, and activity of cells. In metazoans, most morphogenetic programs that establish the recognizable body plan of any given species are initiated during the developmental period, although in many species growth continues throughout life. By comparing the cellular and molecular development of the bilaterians (bilaterally symmetrical animals) to the development of their closest outgroup, the cnidarians, it appears that morphogenesis and the cell fate specification associated with germ layer formation during the process of gastrulation are separately controlled by two distinct downstream pathways (canonical and planar cell polarity) of Wnt signaling. Furthermore, a fundamental change in the early developmental program, the positioning of the site of gastrulation, allowed the spatial separation of gene regulatory networks that facilitated the rapid diversification of bilaterian body plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamska M, Degnan SM, Green KM, Adamski M, Craigie A, Larroux C, Degnan BM (2007) Wnt and TGF-beta expression in the sponge Amphimedon queenslanica and the origin of metazoan embryonic patterning. PLoS ONE 2(10):e1031

    Article  Google Scholar 

  • Adamska M, Larroux C, Adamski M, Green KM, Lovas E, Koop D, Richards GS, Zwafink C, Degnan BM (2010) Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica. Evol Dev 12:494–518

    Article  Google Scholar 

  • Agius E, Oelgeschlager M, Wessely O, Kemp C, De Robertis EM (2000) Endodermal nodal-related signals and mesoderm induction in Xenopus. Development 127:1173–1183

    Google Scholar 

  • Angerer LM, Newman LA, Angerer RC (2005) SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover. Development 132:999–1008

    Article  Google Scholar 

  • Byrum CA, Martindale MQ (2004) Gastrulation in the cnidaria and ctenophora. In: Stern CD (ed) Gastrulation: from cells to embryos. Cold Spring Harbor Laboratory Press, New York, pp 33–50

    Google Scholar 

  • Collins AG, Valentine JW (2001) Defining phyla: evolutionary pathways to metazoan body plans. Evol Dev 3:432–442

    Article  Google Scholar 

  • Damen WG (2007) Evolutionary conservation and divergence of the segmentation process in arthropods. Dev Dyn 236:1379–1391

    Article  Google Scholar 

  • Davidson EH (2006) The regulatory genome: gene regulatory networks in development and evolution. Academic Press, San Diego

    Google Scholar 

  • Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800

    Article  Google Scholar 

  • Duboc V, Lapraz F, Saudemont A, Bessodes N, Mekpoh F, Haillot E, Quirin M, Lepage T (2010) Nodal and BMP 2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo. Development 137:223–235

    Article  Google Scholar 

  • Freeman G (1977) The establishment of the oral–aboral axis in ctenophores. J Embryol Exp Morphol 42:237–260

    Google Scholar 

  • Freeman G (1981a) The cleavage initiation site establishes the posterior pole of the hydrozoan embryo. Roux’s Arch Dev Biol 190:123–125

    Google Scholar 

  • Freeman G (1981b) The role of polarity in the development of the hydrozoan planula larva. Roux’s Arch of Dev Biol 190:168–184

    Article  Google Scholar 

  • Fritzenwanker JH, Saina M, Technau U (2004) Analysis of forkhead and snail expression reveals epithelial–mesenchymal transitions during embryonic and larval development of Nematostella vectensis. Dev Biol 275:389–402

    Article  Google Scholar 

  • Grainger RM (1992) Embryonic lens induction: shedding light on vertebrate tissue determination. Trends Genet 8:349–355

    Google Scholar 

  • Gritsman K, Talbot WS, Schier AF (2000) Nodal signaling patterns the organizer. Development 127:921–932

    Google Scholar 

  • Hejnol A, Martindale MQ, Henry JQ (2007) High resolution fate map of the gastropod snail, Crepidula fornicata. Origins of ciliary bands, nervous and musculature elements. Dev Biol 305:63–76

    Article  Google Scholar 

  • Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguñà J, Bailly X, Jondelius U, Müller WE, Seaver EC, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc Lond B 276:4261–4270

    Article  Google Scholar 

  • Henry JJ, Martindale MQ (1998) Conservation of the spiralian developmental program: cell lineage of the nemertean, Cerebratulus lacteus. Dev Biol 201:253–269

    Article  Google Scholar 

  • Jacobs DK, Hughes NC, Fitz-Gibbon ST, Winchell CJ (2005) Terminal addition, the Cambrian radiation, and the Phanerozoic evolution of bilaterian form. Evol Dev 7:498–514

    Article  Google Scholar 

  • Jacobson AG (1966) Inductive processes in embryonic development. Science 152:25–34

    Article  Google Scholar 

  • Kenny AP, Oleksyn DW, Newman LA, Angerer RC, Angerer LM (2003) Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos. Dev Biol 261:412–425

    Article  Google Scholar 

  • Kraus Y, Technau U (2006) Gastrulation in the sea anemone Nematostella vectensis occurs by invagination and immigration: an ultrastructural study. Dev Genes Evol 216:119–132

    Article  Google Scholar 

  • Kumburegama S, Wijesena N, Xu R, Wikramanayake AH (2011) Strabismus-mediated primary archenteron invagination is uncoupled from Wnt/β-catenin-dependent endoderm cell fate specification in Nematostella vectensis (Anthozoa, Cnidaria): implications for the evolution of gastrulation. Evol Dev 2:2

    Google Scholar 

  • Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt HA, Technau U, von Haeseler A, Hobmayer B, Martindale MQ, Holstein TW (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433:156–160

    Article  Google Scholar 

  • Lai S-L, Chien AJ, Moon RT (2009) Wnt/Fz signaling and the cytoskeleton: potential roles in tumorigenesis. Cell Res 19:532–545

    Article  Google Scholar 

  • Lambert JD (2010) Developmental patterns in spiralian embryos. Curr Biol 20:R72–R77

    Article  Google Scholar 

  • Lee PN, Pang K, Matus DQ, Martindale MQ (2006) A WNT of things to come: evolution of Wnt signaling and polarity in cnidarians. Semin Cell Dev Biol 17:157–167

    Article  Google Scholar 

  • Lee PN, Kumburegama S, Marlow HQ, Martindale MQ, Wikramanayake AH (2007) Asymmetric developmental potential along the animal–vegetal axis in the anthozoan cnidarian, Nematostella vectensis, is mediated by dishevelled. Dev Biol 310:169–186

    Article  Google Scholar 

  • Leptin M (2005) Gastrulation movements: the logic and the nuts and bolts. Dev Cell 8:305–320

    Article  Google Scholar 

  • Loose M, Patient R (2004) A genetic regulatory network for Xenopus mesendoderm formation. Dev Biol 271:467–478

    Article  Google Scholar 

  • Magie CR, Martindale MQ (2008) Cell–cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis. Biol Bull 214:218–232

    Article  Google Scholar 

  • Magie CR, Pang K, Martindale MQ (2005) Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev Genes Evol 215:618–630

    Article  Google Scholar 

  • Magie CR, Daly M, Martindale MQ (2007) Gastrulation in the cnidarian Nematostella vectensis occurs via invagination not ingression. Dev Biol 305:483–497

    Article  Google Scholar 

  • Marlow HQ, Srivastava M, Matus DQ, Rokshar DS, Martindale MQ (2009) Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev Neurobiol 69:235–254

    Article  Google Scholar 

  • Martindale MQ (2005) The evolution of metazoan axial properties. Nat Rev Genet 6:917–927

    Article  Google Scholar 

  • Martindale MQ, Hejnol A (2009) A developmental perspective: changes in the position of the blastopore during bilaterian evolution. Dev Cell 17:162–174

    Article  Google Scholar 

  • Martindale MQ, Pang K, Finnerty JR (2004) Investigating the origins of triploblasty: “mesodermal” gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development 131:2463–2474

    Article  Google Scholar 

  • Matus DQ, Pang K, Marlow HQ, Dunn CW, Thomsen GH, Martindale MQ (2006a) Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proc Natl Acad Sci USA 103:11195–11200

    Article  Google Scholar 

  • Matus DQ, Thomsen GH, Martindale MQ (2006b) Dorso/ventral genes are asymmetrically expressed and involved in germ-layer demarcation during cnidarian gastrulation. Curr Biol 16:499–505

    Article  Google Scholar 

  • Matus DQ, Thomsen GH, Martindale MQ (2007) FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian. Dev Genes Evol 217:137–148

    Article  Google Scholar 

  • Matus DQ, Magie CR, Pang K, Martindale MQ, Thomsen GH (2008) The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution. Dev Biol 313:501–518

    Article  Google Scholar 

  • Mergner H (1971) Cnidaria. In: Reveberi G (ed) Experimental embryology of marine and fresh-water invertebrates. North-Holland, Amsterdam, pp 1–84

    Google Scholar 

  • Nakanishi N, Yuan D, Jacobs DK, Hartenstein V (2008) Early development, pattern, and reorganization of the planula nervous system in Aurelia (Cnidaria, Scyphozoa). Dev Genes Evol 218:511–524

    Article  Google Scholar 

  • Overton PM, Meadows LA, Urban J, Russell S (2002) Evidence for differential and redundant function of the Sox genes Dichaete and SoxN during CNS development in Drosophila. Development 129:4219–4228

    Google Scholar 

  • Pang K, Ryan JF, Program NCS, Mullikin JC, Baxevanis AD, Martindale MQ (2010) Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi. Evol Dev 1:10

    Google Scholar 

  • Petersen CP, Reddien PW (2009) Wnt signaling and the polarity of the primary body axis. Cell 139:1056–1068

    Article  Google Scholar 

  • Pevny LH, Placzek M (2005) SOX genes and neural progenitor identity. Curr Opin Neurobiol 15:7–13

    Article  Google Scholar 

  • Pevny LH, Sockanathan S, Placzek M, Lovell-Badge R (1998) A role for SOX1 in neural determination. Development 125:1967–1978

    Google Scholar 

  • Piraino S, Zega G, Di Benedetto C, Leone A, Dell’anna A, Pennati R, Candia Carnevali D, Schmid V, Reichert H (2011) Complex neural architecture in the diploblastic larva of Clava multicornis (Hydrozoa, Cnidaria). J Comp Neurol 519:1931–1951

    Article  Google Scholar 

  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokshar DS (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94

    Article  Google Scholar 

  • Rentzsch F, Anton R, Saina M, Hammerschmidt M, Holstein TW, Technau U (2006) Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: implications for the evolution of axial patterning. Dev Biol 296:375–387

    Article  Google Scholar 

  • Rentzsch F, Fritzenwanker JH, Scholz CB, Technau U (2008) FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis. Development 135:1761–1769

    Article  Google Scholar 

  • Ryan JF, Pang K, Program NCS, Mullikin JC, Martindale MQ, Baxevanis AD (2010) The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to ParaHoxozoa. Evol Dev 1:9

    Google Scholar 

  • Sasai Y (2001) Roles of Sox factors in neural determination: conserved signaling in evolution? Int J Dev Biol 45:321–326

    Google Scholar 

  • Seaver EC, Paulson DA, Irvine SQ, Martindale MQ (2001) The spatial and temporal expression of Ch-en, the engrailed gene in the polychaete Chaetopterus, does not support a role in body axis segmentation. Dev Biol 236:195–209

    Article  Google Scholar 

  • Seipp S, Schmich J, Will B, Schetter E, Plickert G, Leitz T (2010) Neuronal cell death during metamorphosis of Hydractinia echinata (Cnidaria, Hydrozoa). Invertebr Neurosci 10:77–91

    Article  Google Scholar 

  • Shen MM (2007) Nodal signaling: developmental roles and regulation. Development 134:1023–1034

    Article  Google Scholar 

  • Simons M, Mlodzik M (2008) Planar cell polarity signaling: from fly development to human disease. Annu Rev Genet 42:517–540

    Article  Google Scholar 

  • Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokshar DS (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960

    Article  Google Scholar 

  • Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska M, Darling A, Degnan SM, Oakley TH, Plachetzki DC, Zhai Y, Adamski M, Calcino A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S, Woodcroft BJ, Vervoort M, Kosik KS, Manning G, Degnan BM, Rokshar DS (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–726

    Article  Google Scholar 

  • Tamulonis C, Postma M, Marlow HQ, Magie CR, de Jong J, Kaandorp J (2010) A cell-based model of Nematostella vectensis gastrulation including bottle cell formation, invagination and zippering. Dev Biol 351:217–228

    Article  Google Scholar 

  • Technau U, Scholz CB (2003) Origin and evolution of endoderm and mesoderm. Int J Dev Biol 47:531–539

    Google Scholar 

  • Technau U, Steele RE (2011) Evolutionary crossroads in developmental biology: cnidaria. Development 138:1447–1458

    Article  Google Scholar 

  • Technau U, Rudd S, Maxwell P, Gordon PMK, Saina M, Grasso LC, Hayward DC, Sensen CW, Saint R, Holstein TW, Ball EE, Miller DJ (2005) Maintenance of ancestral genetic complexity and non-metazoan genes in two basal cnidarians. Trends Genet 21:633–639

    Article  Google Scholar 

  • Tessier G (1931) Étude expérimentale du developpement de quelques hydraires. Ann Sci Nat Ser X:5–60

    Google Scholar 

  • Tyler S (2003) Epithelium: the primary building block for metazoan complexity. Integr Comp Biol 43:55–63

    Article  Google Scholar 

  • Wang Y, Nathans J (2007) Tissue/planar cell polarity in vertebrates: new insights and new questions. Development 134:647–658

    Article  Google Scholar 

  • Weitzel HE, Illies MR, Byrum CA, Xu R, Wikramanayake AH, Ettensohn CA (2004) Differential stability of beta-catenin along the animal–vegetal axis of the sea urchin embryo mediated by dishevelled. Development 131:2947–2956

    Article  Google Scholar 

  • Wikramanayake AH, Hong M, Lee PN, Pang K, Byrum CA, Bince JM, Xu R, Martindale MQ (2003) An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature 426:446–450

    Article  Google Scholar 

  • Willmer P (1990) Invertebrate relationships: patterns in animal evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wilson EB (1898) Considerations on cell-lineage and ancestral reminiscence based on a re-examination of some points in the early development of annelids and polyclades. Ann N Y Acad Sci 11:1–27

    Article  Google Scholar 

  • Zhang C, Basta T, Jensen ED, Klymkowsky MW (2003) The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation. Development 130:5609–5624

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Q. Martindale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martindale, M.Q., Lee, P.N. The Development of Form: Causes and Consequences of Developmental Reprogramming Associated with Rapid Body Plan Evolution in the Bilaterian Radiation. Biol Theory 8, 253–264 (2013). https://doi.org/10.1007/s13752-013-0117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13752-013-0117-z

Keywords

Navigation