Skip to main content
Log in

⊃E is Admissible in “true” relevant arithmetic

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

The system R## of “true” relevant arithmetic is got by adding the ω-rule “Infer ∀xAx from A0, A1, A2, ....” to the system R# of “relevant Peano arithmetic”. The rule ⊃E (or “gamma”) is admissible for R##. This contrasts with the counterexample to ⊃E for R# (Friedman & Meyer, “Whither Relevant Arithmetic”). There is a Way Up part of the proof, which selects an arbitrary non-theorem C of R## and which builds by generalizing Henkin and Belnap arguments a prime theory T which still lacks C. (The key to the Way Up is a Witness Protection Program, using the ω-rule.) But T may be TOO BIG, whence there is a Way Down argument that produces a better theory TR, such that R## ⫅ TR ⫅ T. (The key to the Way Down is a Metavaluation, on which membership in T is combined with ordinary truth-functional conditions to determine TR.) The result is a theory that is Just Right, whence it never happens that A ⊃ C and A are theorems of R## but C is a non-theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Meyer, R. K.: Relevant arithmetic, (abstract), Bulletin of the Section of Logic 5 (1976), 133–137.

    Google Scholar 

  2. Friedman, H. and Meyer, R. K.: Whither relevant arithmetic, The Journal of Symbolic Logic 57 (1992), 824–831.

    Google Scholar 

  3. Anderson, A. R., Belnap, N. D., Jr., and Dunn, J. M.: Entailment (vol. 2), Princeton, 1992.

  4. Meyer, R. K.: Coherence revisited, typescript, ANU, 1976.

  5. Ackermann, W.: Begründung einer strengen Implikation, The Journal of Symbolic Logic 21 (1956), 113–128.

    Google Scholar 

  6. Anderson, A. R.: Some open problems concerning the system E of entailment, Acta Philosophica Fennica 16 (1963), 7–18.

    Google Scholar 

  7. Meyer, R. K. and Dunn, J. M.: E, R, and γ, The Journal of Symbolic Logic 34(1969), 460–474.

    Google Scholar 

  8. Dunn, J. M.: Relevant predication 1: the formal theory, Journal of Philosophical Logic 16 (1987), 347–381.

    Google Scholar 

  9. Meyer, R. K.: Ackermann, Takeuti, und Schnitt: γ for higher-order relevant logics, (abstract), Bulletin of the Section of Logic 5 (1976), 138–144.

    Google Scholar 

  10. Routley, R. and Meyer, R. K.: The semantics of entailment (I), in: Truth, Syntax, Modality, H. Leblanc (ed), Amsterdam, 1973, 199–243.

  11. Girard, J.-Y.: Linear logic, Theoretical Computer Science 50 (1987), 1–102.

    Google Scholar 

  12. Kalish, D. and Montague, R.: Logic: Techniques of Formal Reasoning, N. Y., 1964.

  13. Curry, H. B.: Foundations of Mathematical Logic, McGraw-Hill, N. Y., 1963.

    Google Scholar 

  14. Meyer, R. K.: Arithmetic formulated relevantly, typescript, ANU, 1975.

  15. Meyer, R. K. and Mortensen, C.: Inconsistent models for relevant arithmetics, The Journal of Symbolic Logic 49 (1984), 917–929.

    Google Scholar 

  16. Gabbay, D.: On second order intuitionistic propositional calculus with full comprehension, Archiv für mathematische Logik und Grundlagenforschung 16 (1974), 177–186.

    Google Scholar 

  17. Dunn, J. M. and Belnap, N. D., Jr.: The substitution interpretation of the quantifiers, Nous 2 (1968), 177–185.

    Google Scholar 

  18. Leblanc, H.: Truth-value Semantics, N. Holland, Amsterdam, 1976.

    Google Scholar 

  19. Heyting, A.: Die formalen Regeln der intuitionistischen Logik, in: Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physicalischmathematische Klasse (1930), 42–56.

  20. Birkhoff, G. and Von Neumann, J.: On the logic of quantum mechanics, Ann. of Math. 37 (1936), 823–843.

    Google Scholar 

  21. Thistlewaite, P. B., McRobbie, M. A. and Meyer, R. K.: Automated Theorem-Proving in Non-Classical Logics, Pitman, London, 1988.

    Google Scholar 

  22. Routley, R. and Meyer, R. K.: The semantics of entailment III, Journal of Philosophical Logic 1 (1972), 192–208.

    Google Scholar 

  23. Slaney, J. K.: Reduced models for relevant logics without WI, Notre Dame Journal of Formal Logic 28 (1987), 395–407.

    Google Scholar 

  24. Mortensen, C.: Inconsistent mathematics, Kluwer, Dordrecht/Boston/London, 1994.

    Google Scholar 

  25. Mendelson, E: Introduction to Mathematical Logic, Van Nostrand, Princeton, 1964.

    Google Scholar 

  26. Schütte, K.: Beweistheoretische Erfassung der unendlichen Induktion in der Zahlentheorie, Math. Annalen 122 (1951), 369–389.

    Google Scholar 

  27. Dunn, J. M. and Meyer, R. K.: Gentzen's cut and Ackermann's gamma, in: J. Norman and R. Sylvan (eds), Directions in Relevant Logic, Kluwer, 1989, 229–240.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, R.K. ⊃E is Admissible in “true” relevant arithmetic. Journal of Philosophical Logic 27, 327–351 (1998). https://doi.org/10.1023/A:1017990121294

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017990121294

Keywords

Navigation