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1 Introduction

A well-known axiomatization of the basic notions of general topology in the form of propositional
logic S4 was given by McKinsey and (for mathematically more interesting spaces like real line, real
plane etc.) by McKinsey and Tarski. If only open sets are considered instead of arbitrary sets,
one gets intuitionistic logic. L.E.J. Brower (of fixed point theorem) who created the background
for this logic, stressed the connection of his principles with continuity considerations. This line of
investigation leads to the theory of toposes and other connections with mainstream mathematics. A
topological space X often acquires more interesting structures when it is the domain of a dynamical
topological system, that is, a pair 〈X, T 〉 where X is the topological space and T is a continuous
transformation on X. Dynamical topological logic [4, 5] studies dynamical topological systems by
logical means. We consider here propositional systems, since predicate extensions tend to be in-
tractable, in particular non-axiomatizable. Propositional formulas are constructed from variables
(atomic formulas) by Boolean connectives, necessity � and a monadic operation ©. In a standard
interpretation, variables represents subsets of X, Boolean connectives act in a natural way, � is the
interior and © is the pre-image under the operation T . Under this interpretation the axiom schema

©�A → � © A (C)

expresses continuity of T . The propositional system S4C includes S4, (C) and standard axioms
relating © to Boolean connectives:

©(A&B) ⇐⇒ ©A& © B, ©¬A ⇐⇒ ¬© A.

Completeness of S4C for the class of all topological spaces has been proved in [1], in particular
for finite spaces derived from Kripke models. These spaces do not satisfy topological separability
axioms and are not very natural mathematically. We prove completeness of S4C for Cantor space,
a space that is very popular in the theory of dynamical systems. P. Kremer pointed out that the
real line is not complete for S4C.

In Section 2 we recapitulate relevant definitions and prove general results on embeddings of
dynamic topological spaces. Corollary 2.1 ensures that a refuting assignment for a formula in a
Kripke frame 〈W, R, S〉 can be translated to the Cantor space B provided there is a continuous and
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open map W : X → W and a continuous transformation T on B satisfying functoriality condition:

WT = SW (⋆)

The remaining part of the paper provides application of these results. Section 3 treats the “intu-
itionistic” case where transferring an operation S from a finite Kripke model to the Cantor space is
straightforward. For a sequence s ∈ B, T (s)(n) = S(s(n)). This construction does not extend im-
mediately to the general case where clusters (non-singleton sets of R-equivalent worlds) can appear.
No reasonable uniform choice of a representative of a whole cluster (as in [3]) seems to satisfy the
functoriality condition (⋆), if a map W : B → W is defined as in [3] and T is defined coordinate-wise.
Section 4 presents a more sophisticated construction for the Cantor space. Operation T : B → B
is defined coordinate-wise with delays (Definition 4.5) to make T−1 defined on the range of T and
traceable back in the sense that every chain

x ∈ B, T−1(x), T−2(x), . . .

terminates at T−n(x) 6∈ range(T ). After that it is possible to define W(x) for x 6∈ range(T ) as
an R-stabilization point, and then to define W(x) for the remaining x ∈ B using the functoriality
condition such that

W(x) = S(W(T−1(x))).

2 Dynamic Topological Models

We use Int to denote the interior operator.

Definition 2.1 (Dynamic Topological Space) A dynamic topological space is a pair

〈X, T 〉,

where X is a topological space and T is a continuous function on X.

Definition 2.2 (Dynamic Topological Model) A dynamic topological model is a triple

〈X, T, V 〉,

where 〈X, T 〉 is a dynamic topological space and V is a function assigning a subset of X to each
propositional variable. The valuation V is extended to all S4C formulas as follows:

V (α ∨ β) = V (α) ∪ V (β),

V (α & β) = V (α) ∩ V (β),

V (©α) = T−1(V (α)),

V (¬α) = X \ V (α),

V (�α) = Int(V (α)).

We say that α is valid in a topological model M and write M |= α if and only if V (α) = X.
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Definition 2.3 (Dynamic Kripke Model) A dynamic Kripke frame (for S4C) is a tuple
K = 〈W, R, S〉 where W is a non-empty set, R is a reflexive and transitive relation on W and
S : W → W is a function monotonic with respect to R, i.e., wRw′ implies S(w)R S(w′).

The elements in W are called worlds. We say that a world w is an R-successor of a world
w′ if wRw′, and w is R-equivalent to w′ (written w ≡R w′) if both wRw′ and w′Rw. A dynamic
Kripke frame is rooted if there exists a world 0 such that any world w in W is an R-successor of
0.

A dynamic Kripke model is a tuple M = 〈W, R, S, V 〉 with 〈W, R, S〉 a dynamic Kripke frame
and V a valuation function, which assigns a subset of worlds in W to every propositional variable.
Validity relation |= is defined recursively in the standard way. In particular,

(M, w) |= �α iff (M, w′) |= α for every w′ such that wRw′,

and
(M, w) |= ©α iff (M, S(w)) |= α.

We say that a formula α is valid in M if and only if (M, w) |= α for every w ∈ W . A formula
α is valid (written |= α) if α is valid in every dynamic Kripke model.

We can think of a dynamic Kripke frame as being a dynamic topological space by imposing a
topology on it.

Definition 2.4 (Dynamic Kripke Space) Let K = 〈W, R, S〉 be a dynamic Kripke frame. The
dynamic Kripke space on K is a dynamic topological space K = 〈〈W,O〉, S〉 where 〈W,O〉 is a
topological space with the carrier W and open sets closed under R, i.e., for any V ⊆ W ,

V ∈ O iff [(w ∈ V and wRw′) implies w′ ∈ V ] for all w, w′ ∈ W.

This topology is given by basic neighborhoods:

Ww = {w′ ∈ W : wRw′}

The soundness of above definition is well-known [2].

Theorem 2.1 S is monotonic with respect to R if and only if S is continuous with respect to O.

It was shown by J. Davoren that S4C is complete for finite rooted dynamic Kripke models [2].

Theorem 2.2 For any S4C formula α, S4C ⊢ α if and only if α is valid in all finite rooted dynamic
Kripke models.

Definition 2.5 Let M1 = 〈X1, T1〉, M2 = 〈X2, T2〉 be two dynamic topological spaces. We say a
map W is a dynamic topological functor from M1 to M2 if

1. W is a continuous and open map from X1 onto X2, and

2. W(T1(x)) = T2(W(x)), that is, the following diagram commutes:

X1

W
−−−−→ X2

T1





y





y

T2

X1 −−−−→
W

X2
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Lemma 2.1 Let M1 = 〈X1, T1, V1〉, M2 = 〈X2, T2, V2〉 be two dynamic topological models. Suppose
that W : M1 → M2 is a functor and for each propositional variable p,

V1(p) = W−1(V2(p)).

Then
V1(α) = W−1(V2(α))

for any S4C-formula α.

Proof. By induction on α. The base case and induction steps for connectives ∨, &,¬ are straight-
forward. Now consider the remaining two cases: α ≡ �β and α ≡ ©β.

• Case α ≡ �β. We have

V1(α) = V1(�β)
= Int(V1(β)) by the definition of V1

= Int(W−1(V2(β))) by the induction hypothesis
= W−1(Int(V2(β))) by the continuity and openness of W
= W−1(V2(�β)) by the definition of V2

= W−1(V2(α)).

• Case α ≡ ©β. We need to show that V1(©β) = W−1(V2(©β)). Let x ∈ X1. We have

x ∈ V1(©β) ⇔ T1(x) ∈ V1(β) by the definition of V1

⇔ T1(x) ∈ W−1(V2(β)) by the induction hypothesis
⇔ W(T1(x)) ∈ V2(β)
⇔ T2(W(x)) ∈ V2(β) since W is a functor
⇔ W(x) ∈ V2(©β) by the definition of V2

⇔ x ∈ W−1(V2(©β)).

⊣

Lemma 2.2 Let M1 = 〈X1, T1, V1〉, M2 = 〈X2, T2, V2〉 be two dynamic topological models. Suppose
that W : M1 → M2 is a functor and for each propositional variable p,

V1(p) = W−1(V2(p)).

Then for any S4C-formula α,
M2 |= α iff M1 |= α.

Proof. Suppose that M2 |= α, that is, V2(α) = X2. By Lemma 2.1 V1(α) = W−1(V2(α)), and so
V1(α) = X1 as required. On the other hand suppose that M1 |= α, but M2 6|= α, i.e., V2(α) 6= X2.
Since W is onto and V1(α) = W−1(V2(α)), we have V1(α) 6= X1, that is, M1 6|= α, a contradiction.
⊣

Corollary 2.1 Let C1 and C2 be two classes of dynamic Kripke models such that for every model
M2 ∈ C2 there is an M1 ∈ C1 and a functor W : M1 → M2. Then, if C2 is complete for S4C, then
C1 is also complete for S4C.

Proof. If M2 6|= α, then M1 6|= α by Lemma 2.2. ⊣
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2.1 Root-preserving Dynamic Kripke Models

In this section we present a proof that an additional condition

T (0) = 0 (1)

for dynamic Kripke models with a root 0 preserves completeness.

Theorem 2.3 ([2]) A formula α is valid in all dynamic Kripke model iff it is valid in all models
satisfying (1).

Proof. To a given Kripke model M with a carrier W and a forcing relation |=, add a root 0 with
the relation (1). Denote the new model by M ′ and its forcing relation by |=′. (The definition of
0 |=′ p is not important.) By induction on formula α it is easy to prove (using that the accessibility
relation R and the operation T are not changed for elements of W ): for w ∈ W ,

w |= α ⇐⇒ w |=′ α

Hence if α is refuted in M it is also refuted in M ′. ⊣
From now on we assume condition (1) and another condition: a dynamic Kripke model has at

least two worlds.

3 Completeness in a Simple Case

This section presents a simplified construction for the case where the Kripke frame does not contain
clusters. We assume that a finite rooted dynamic Kripke frame K = 〈W, R, S〉 is given such that

W = {0, 1, . . . , N − 1}, N ≥ 2.

Let
Wmon = {s ∈ W ∗ | ∀n(s(n)Rs(n + 1))}

denotes the set of all R-monotone sequences of worlds in W .
Let W f mon be the set of all finite monotonic non-empty sequences of worlds in W . Let lth(b)

denote the length of b ∈ W f mon so that

b = b(1) . . . b(lth(b)).

Define W f : W ∗ → W

W f(b) = b(lth(b)). (2)

For Wmon consider in this section only the situation when R is a partial ordering, that is, wRw′

and w′Rw together implies w = w′. In this case every sequence s ∈ Wmon stabilizes:

(∃n0)(∀n ≥ n0) s(n) = s(n0).

Denote minimal such n0 by n(s) and define W : Wω → W by

W(s) = s(n(s)).
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Definition 3.1 The topology in W f mon, Wmon is introduced in a standard way by the basic neigh-
borhoods

Tb = the set of sequences with a prefix b.

Definition 3.2 The operation S on a dynamic Kripke frame K is extended coordinate-wise to an
operation T f : W f mon → W f mon and an operation T : Wmon → Wmon, respectively.

T f(b(1) . . . b(n)) = S(b(1)) . . . S(b(n)) for b ∈ W f mon,

(T (s))(n) = S(s(n)) for s ∈ Wmon.

Theorem 3.1 1. Both operations W f : W f mon → W f mon and W : Wmon → Wmon are
continuous and open.

2. The pair (W f , T f) for W f mon and the pair (W , T ) for Wmon are functors from the respective
spaces onto K.

Proof.

1. It is easy to verify (cf. [3]) for w = W(b),

W f(Tb) = Ww,

W(Tb) = Ww.

2. For b′ = T f(b), it is easy to verify

(T f)−1(Tb′) ⊇ Tb,

T−1(Tb′) ⊇ Tb,

using that T f and T commute with concatenation ∗ of sequences in W f mon and Wmon,
respectively:

T f(b ∗ c) = T f(b) ∗ T f(c),
T (b ∗ s) = T (b) ∗ T (s).

Functoriality relation W fT f = SW f is easy for W f mon: if n = lth(b), then n = lth(T (b)) and
hence

W f(T f(b)) = (T f(b))(n) = S(b(n)) = S(W f(b)).

For Wmon note that the inequality n(T (s)) ≤ n(s) holds for stabilization points. Hence

W(T (s)) = (T (s))(n(T (s))) = (T (s))(n(s)) = S(s(n(s))) = S(W(s))

as required. ⊣

Theorem 3.2 S4C is complete for W f mon, as well as for the partially ordered Wmon.

Proof. By Corollary 2.1. ⊣
Unfortunately this proof does not work for the general case of Wmon. Let us try to define the

map W in the same way as in [3]:

W(s)=some fixed representative of a cluster C such that s(n) ∈ C for all sufficiently large n.

Consider a two-element cluster W = {0, 1} with S(i) = 1 − i and choose 0 as a representative
of the cluster. Then

W(T (1ω)) = W(0ω) = 0, S(W(0ω)) = S(0) = 1.
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4 Cantor Space and Kripke Models

4.1 Cantor Space

Let T = {0, 1}ω be the full infinite binary tree where each node in the tree is identified by a finite
prefix (binary-word) from the root Λ to it. We use b and b to denote finite prefixes and infinite paths
respectively. We write T〈b〉 for the subtree rooted at node b. Let B be the standard Cantor space
represented by T , where each element of B is identified with an infinite path (an infinite binary
word). For each b ∈ B, b↾n denotes the prefix of length n, i.e., the finite prefix b↾n = b(1) . . .b(n).
We write b1 ≡n b2 if b1 ↾n = b2 ↾n. One can imagine adding the component b(0) = 0 to account
for the root Λ, but we do not do that.

We partition B into two classes. The first class consists of all paths which end with 0ω. The
second class consists of paths which either ends with 1ω or contains infinitely many 0’s as well as
infinitely many 1’s.

Formally let

B1 = {b ∈ B | b = b0ω for some b ∈ {0, 1}∗}, B2 = B \ B1.

We say 〈B, T 〉 is a dynamic Cantor space if T is a continuous function on B.

4.2 Proof Plan

We shall show the construction of an open and continuous map W : B → W and a continuous map
T : B → B such that the functoriality condition (⋆) is satisfied. To achieve this, we first define
W f : {0, 1}∗ → W and T f : {0, 1}∗ → {0, 1}∗ such that

W fT f = SW f . (♯)

Then W and T are obtained by uplifting W f and T f from {0, 1}∗ to B.
The proof outline is as follows. First, we define W f as the labeling function induced from

unwinding K into B [3]. Second, using the coordinate-wise bisimulation between B and K, T f is
defined such that (♯) holds, and if b ≺ b′, then T f(b) ≺ T f(b′). Third, T is obtained as the limit
function of T f , using the fact that an infinite word can be viewed as the limit of its prefixes in the
increasing order (with respect to ≺). At last, we lift W f to W by defining

W(b) = W f(ch(b)), (‡)

where ch is the choice function which select a finite representative ch(b) for each infinite word b.
To establish (⋆), it suffices to show

ch(T (b)) = T f(ch(b)), (§)

because
W(T (b)) = SW(b)

⇔ W f(ch(T (b))) = S(W f(ch(b))) by (‡)
⇔ W f(ch(T (b))) = W f(T f(ch(b))). by (♯)

For this we introduce the notions segment rank, landmark rank and T -rank, and show that T−1 is
a well-founded relation. Then we are able to define ch inductively, such that for b ∈ range(T−1)

ch(b) = T f(ch(T−1(b))),

from which (§) follows.
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4.3 The Labeling Function W f

Let K = 〈W, R, S〉 be a finite dynamic Kripke frame with the root 0, and K be the corresponding
dynamic Kripke space. We use an unwinding technique similar to [3] to label every node of T by a
world in W .

Definition 4.1 (Unwinding and Labeling) We define a labeling function W f : {0, 1}∗ → W

recursively.

1. W f(Λ) = 0.

2. Let b ∈ {0, 1}∗ be a node in B. Suppose b is already labeled by a world w0 (i.e., W f(b) = w0)
which has m R-successors w0, w1, . . . , wm−1. Then

W f(b0i) =w0 for 0 < i ≤ m, (3)

W f(b0i1) =wi for 0 ≤ i < m. (4)

T W
b denotes the infinite binary tree with root b labeled by elements of W as above. T W stands for

the labeled full infinite binary tree.

Proposition 4.1 Let b ∈ {0, 1}∗ be a node in B. If W f(b) has m R-successors (including itself),
then for any k ≥ 0,

W f(b) = W f(b0k), (5)

W f(b1) = W f(b0mk1). (6)

Proof. The relation (5) is obvious. For (6) assume that b = b′0i (i ≥ 0) and the label W f(b1) = wi

was obtained from labeling beginning with the node b′ with W f(b′) = W f(b) = w0. Then the
labeling is repeated beginning with the node b′0m such that

W f(b′0m0j1) = wj , 0 ≤ j < m.

By induction on k, we obtain W f(b′0mk0j1) = wj . In particular for j = i, we have

W f(b0mk1) = W f(b′0mk0i1) = wi = W f(b1). ⊣

Proposition 4.2 Let W f(b) = w. Then for any w′ ∈ W with wRw′ there exist infinitely many
k ≥ 0 such that W f(b0k1) = w′.

Proof. Let w, w1, . . . , wm−1 (m ≥ 1) be all R-successors of w. By Definition 4.1 all R-successors of
w will be enumerated by the sequence

〈W f(b0i1) | 0 ≤ i < m〉.

In particular, assume W f(b0k′

1) = w′ for some k′ such that 0 ≤ k′ < m. By Proposition 4.1, for
any j such that j ≥ 0, we have

W f(b0mj+k′

1) = W f(b0k′

1) = w′.

So any R-successors of w will appear infinitely often as a label for a node ending in 1. ⊣
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Definition 4.2 (Monotonic Sequences) An infinite sequence b of worlds in W is monotonic

(with respect to R) if Rb(i)b(j) holds for any i < j. We write Wmon for the set of all monotonic
sequences in Wω.

By Definition 4.1 each path in x ∈ B is labeled by a monotonic sequence in Wmon. We write

W (x) = λn.W(x↾n) = W(x↾1)W(x↾2) · · · .

Since K is a finite frame, each sequence in Wmon has a tail consisting of R-equivalent worlds.
Indeed ¬

[

(W (x))(n + 1)R(W (x))(n)
]

is possible only for |W | − 1 values of n.

Definition 4.3 (Stabilization Point) We say that x ∈ B stabilizes at a node b if W f(b) ≡R

W f(b′) for any prefix b′ of x such that b � b′. Define

stb(x) = the least prefix b of x such that W f(b) ≡R W f(b′) for any b′ � b.

The points x = b0ω are dense in B. The definition of the map W : B → W for such points will
have a special form, which motivates the following definition.

Definition 4.4 (Stopping Point) For x ∈ B define

stp(x) =











stb(x) if x ∈ B2,

0 if x = 0ω,

b1 if x = b10ω for some b ∈ {0, 1}∗.

Proposition 4.3 For any x ∈ B, stb(x) � stp(x).

Proof. If x ∈ B2 then by Definition 4.4 stp(x) = stb(x). If x = 0ω, then stb(x) = Λ ≺ 0 = stp(x).
If x = b10ω, then x stabilizes at or before b1. ⊣

4.4 The Function T
f

We obtain the function T f using the coordinate-wise bisimulation between B and K.

Definition 4.5 Define a map T f : {0, 1}∗ → {0, 1}∗ inductively as follows.

1. T f(Λ) = Λ.

2. Suppose for b ∈ {0, 1}∗, T f(b) is already defined and satisfies

W f(T f(b)) = S(W f(b)). (7)

Suppose that the world w = W f(b) has m R-successors (including w). Define

T f(b0) = T f(b)0n+m0, (8)

T f(b1) = T f(b)0n+m1, (9)

where n is the least positive natural number satisfying

W f(T f(b)0n0) = S(W f(b0)), (10)

W f(T f(b)0n1) = S(W f(b1)). (11)
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To see that n exists, first note that W f(b0i) = W f(b) for any i, and so for any n, we have

S(W f(b0)) = S(W f(b)) = W f(T f(b)) = W f(T f(b)0n0).

Next by monotonicity of S we know that both S(W f(b0)) and S(W f(b1)) are successors of W f(T f(b)).
Now apply Proposition 4.2.

Proposition 4.4 For any node b ∈ {0, 1}∗, T f(b) is defined and (7) is satisfied.

Proof. By induction on the structure of the binary tree. For the base case, note that since
W f(Λ) = 0 and S(0) = 0, we have

W f(T f(Λ)) = S(W f(Λ)).

Suppose W f(T f(b)) = S(W f(b)). To show

W f(T f(b0)) = S(W f(b0)),
W f(T f(b1)) = S(W f(b1)),

by (8), (9), we ought to show

W f(T f(b)0n+m0) = S(W f(b0)), (12)

W f(T f(b)0n+m1) = S(W f(b1)), (13)

where m, n are as in Definition 4.5. By Proposition 4.1, (12) follows from (10) and (13) follows
from (11). ⊣

Proposition 4.5 For any non-empty b ∈ {0, 1}∗, lth(T f(b)) > lth(b).

Proof. By induction on lth(b) with the following induction step (i = 0 or 1):

lth(T f(bi)) = lth(T f(b)0n+mi) by the definition
= lth(T f(b)) + n + m + 1
≥ lth(b) + n + m + 1 by the induction hypothesis
> lth(b) + 1 since n + m > 0
= lth(bi).

⊣

Proposition 4.6 T f is strictly monotonic with respect to the prefix order of nodes: if b1 ≺ b2, then
T f(b1) ≺ T f(b2).

Proof. Immediate from Definition 4.5. ⊣

Proposition 4.7 T f is injective.

Proof. Let c, d ∈ {0, 1}∗ be two distinct finite prefixes. If c ≺ d, then by Proposition 4.6, we have
T f(c) ≺ T f(d). Similarly we have T f(d) ≺ T f(c) if d ≺ c. If none of c, d is a prefix of the other, then
let b be the maximum common prefix of c and d. Without loss of generality we assume that b0 is a
prefix of c and b1 is a prefix of d. Then T f(b0) is of the form T f(b)0k0 and is a prefix of T f(c) while
T f(b1) is of the form T f(b)0k1 and is a prefix of T f(d). So T f(c) 6= T f(d). ⊣
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Definition 4.6 (Landmark) We call a node b ∈ {0, 1}∗ a landmark if b is in the range of T f .
If b ≺ b ∈ B, then we say b is a landmark of b.

Proposition 4.8 Let b ∈ {0, 1}∗. b0 is a landmark if and only if b1 is.

Proof. By Definition 4.5, we can assume that (T f)−1(b0) = b′0 for some b′ ∈ {0, 1}∗. Again by
Definition 4.5, T f always maps a pair of siblings to a pair of siblings. Hence T f(b′1) = b1. The
reverse direction is similarly obtained. ⊣

Proposition 4.9 If none of b0i (0 < i < n) is a landmark, then none of b0i1 (0 ≤ i < n − 1) is a
landmark.

Proof. By Proposition 4.8. ⊣

Proposition 4.10 For b ∈ {0, 1}∗ the nodes T f(b) and b contain the same number of 1’s and T f(b)
contains no consecutive 1’s.

Proof. It follows immediately from Definition 4.5 by induction on the length of b. ⊣

Note 4.1 Suppose that b ∈ {0, 1}∗ contains n 1’s. We can view b as a concatenation of n + 1
(possibly empty) segments of 0’s separated by 1. The node T f(b) is obtained from b by inserting a
non-zero number of 0’s into every such segment.

Recall that our goal is to show the well-foundedness of T−1 (Definition 4.8). To achieve this,
we need first show the well-foundedness of (T f)−1.

Definition 4.7 (Segment Rank) A segment of a finite node b ∈ {0, 1}∗ is any maximum seg-
ment of consecutive 0’s in b. Define the segment rank of b by

srk(b) = the length of the shortest segment of b.

Proposition 4.11 For b ∈ {0, 1}∗, srk(b) < srk(T f(b)).

Proof. It follows from Note 4.1 that T f(b) is obtained from b by adding a non-zero number of 0’s
into each segment of b. ⊣

Proposition 4.12 (Well-foundedness of (T f)−1) For any b ∈ {0, 1}∗ there is no infinite chain
of the form

b, (T f)−1(b), (T f)−2(b), . . . , (T f)−n(b), . . .

In other words, there exists the least n such that (T f)−n(b) is not in the range of T f .

Proof. It follows from Proposition 4.11 that srk((T f)−1(b)) < srk(b) and that the segment rank
for any finite prefix can not be negative. ⊣
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4.5 The Function T

Note that an infinite word can be viewed as the limit of the increasing sequence of its prefixes.
Hence we can define T as the limit function of T f .

Definition 4.8 Define a binary relation T on B:

〈x, y〉 ∈ T ⇔ for any finite prefix b of x, T f(b) is a prefix of y : (∀b ≺ x)T f(b) ≺ y.

It is easily seen that 〈0ω, 0ω〉 ∈ T .

Proposition 4.13 T is a function on B.

Proof. (Uniqueness.) Suppose 〈x, y〉 ∈ T and 〈x, y′〉 ∈ T . We prove that any finite prefix of y

is a prefix of y′, and vice versa. Let b ≺ y. Consider a prefix b′ ≺ x of the same length as b. By
Definition 4.8, T f(b′) ≺ y, T f(b′) ≺ y′, and by Proposition 4.5, lth(b) < lth(T f(b′)). So we have
b ≺ T f(b′) ≺ y′, b ≺ T f(b′) ≺ y, and hence y = y′.
(Totality.) By Proposition 4.6, for every prefix b of x, T f(b) is a prefix of one and the same infinite
path of B. ⊣

Proposition 4.14 T is injective.

Proof. Let x, y ∈ B be two infinite paths. Suppose that x 6= y and let b be the maximum finite
common prefix of x and y. Without loss of generality we assume that b0 ≺ x and b1 ≺ y. Then by
Proposition 4.7 T f(b0) 6= T f(b1). Since T f(b0) ≺ T (x) and T f(b1) ≺ T (y), we have T (x) 6= T (y). ⊣

Proposition 4.15 None of paths in T〈1〉 is in the range of T .

Proof. Since T f(0), T f(1) both begin with 0, every y ∈ range(T ) begins with 0. ⊣
Next we show the well-foundedness of T−1.

Definition 4.9 (Landmark Rank) Define the landmark rank of a finite prefix b ∈ {0, 1}∗ by

lrk(b) = the least n such that (T f)−n(b) is not in the range of T f .

In particular lrk always exists by Proposition 4.12 and lrk(b) = 0 if b is not in the range of T f .

Proposition 4.16 For any b ∈ {0, 1}∗, we have lrk(b) < lrk(T f(b)).

Proof. By Definition 4.9. ⊣

Proposition 4.17 Let y = T (x) for some x ∈ B and b be a landmark prefix of y. Then (T f)−1(b) ≺
x.

Proof. Let b, b′ be two consecutive landmarks, i.e., b ≺ b′ and any b′′ between b and b′ is not
a landmark. By Definition 4.5, (T f)−1(b′) = (T f)−1(b)i for i = 0, 1. By Definition 4.8, we can
enumerate all landmarks in y by

T f(b0), T f(b1), . . . , T f(bn), . . . ,

where b0, b1, . . . , bn, . . . enumerates all prefixes of x in the increasing order. So if b is a landmark
prefix of y, then (T f)−1(b) ≺ x. ⊣
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Proposition 4.18 If y = T (x) for some x ∈ B, then all finite prefixes of y ending with 1 are
landmarks.

Proof. Assume b1 ≺ y is not a landmark. Take the maximum prefix c ≺ x such that T f(c) ≺ b1.
Such c exists as T f(Λ) = Λ. One of T f(ci) (i = 0, 1) is a prefix of y. It is different from b1,
since b1 is not a landmark; it is longer than b1, since c is maximal. By definition 4.5, we have
T f(ci) = T f(c)0n+mi, and hence T f(ci) ≺ b1 ≺ T f(c)0n+mi. But this is contradictory, as the last 1
in b1 appears in a segment of 0’s. ⊣

The contrapositive of the above proposition says that if y ∈ B contains a finite non-landmark
prefix ending with 1, then y is not in the range of T . Similar to Proposition 4.12, we have

Proposition 4.19 (Well-foundedness of T−1) If y ∈ B contains 1, then there is no infinite
chain of the form

y, T−1(y), T−2(y), . . . , T−n(y), . . .

I.e., there exists the least n such that T−n(y) is not in the range of T .

Proof. We prove by contradiction. Suppose there exists such an infinite chain. Let b be a prefix
of y ending with 1. By Proposition 4.18, the existence of T−1(y) implies that b is a landmark and
hence (T f)−1(b) is defined. By Proposition 4.16, we have lrk((T f)−1(b)) < lrk(b). Moreover by
Proposition 4.10, we know that (T f)−1(b) ends with 1. By Proposition 4.17, (T f)−1(b) is a prefix of
T−1(y), and hence T−1(y) contains 1. Repeating the above argument, we have an infinite sequence
of the form

lrk(b) > lrk((T f)−1(b)) > lrk((T f)−2(b)) > . . . > lrk((T f)−n(b)) > . . .

which is impossible as a landmark rank can not be negative. ⊣
Proposition 4.19 proves the soundness of the following definition.

Definition 4.10 (T -Rank) Define the T -rank of an infinite path x ∈ B by

trk(x) =

{

0 if x = 0ω or x 6∈ range(T ),

the least n > 0 [T−n(y) 6∈ range(T )] otherwise.

4.6 The Embedding Function W

To lift W f from {0, 1}∗ to B, we need to select a finite representative for each infinite path.

Definition 4.11 (Choice Function) Define the choice function by

ch(x) =

{

stp(x) if trk(x) = 0,

T f(ch(T−1(x))) if trk(x) > 0.

Proposition 4.20 If x ∈ B1, then ch(x) = stp(x).

Proof. By induction on trk(x). If trk(x) = 0, then the statement follows directly from the first
clause of Definition 4.11. Suppose that trk(x) > 0. Then x must contain 1, since trk(0ω) =
0. Suppose that x = b′10ω and let y = T−1(x). By Proposition 4.18 b′1 is a landmark. Let
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(T f)−1(b′1) = b1 for some b ∈ {0, 1}∗. Then y = b10ω and hence y ∈ B1. Since trk(y) < trk(x),
by the induction hypothesis ch(y) = stp(y). In summary, we have

ch(x) = T f(ch(T−1(x))) by Definition 4.11
= T f(ch(y))
= T f(stp(y)) by Proposition 4.20
= T f(b1)
= T f((T f)−1(b′1))
= b′1
= stp(x)

⊣

Proposition 4.21 If x ∈ B2, then ch(x) � stb(x) = stp(x).

Proof. By induction on trk(x). If trk(x) = 0, then the statement follows directly from Definition
4.4 and the first clause of Definition 4.11. Suppose trk(x) > 0. Let y = T−1(x). It is easily
seen that y ∈ B2, as y ∈ B1 implies T (y) = x ∈ B1. Since trk(y) < trk(x), by the induction
hypothesis, we have ch(y) � stp(y). We prove ch(x) � stb(x) by showing W f(b) ≡R W f(ch(x))
for any b ≺ x such that ch(x) ≺ b. Since x ∈ B2, there exists a landmark b′ of x such that
b ≺ b′. Let d = (T f)−1(b′). By monotonicity of T f (Proposition 4.6) we have ch(y) ≺ d, since the
opposite d � ch(y) implies b′ = T f(d) � T f(ch(y)) = T f(ch(T−1(x))) = ch(x), a contradiction. So
W f(ch(y)) ≡R W f(d) since ch(y) � stb(y). In summary, we have

W f(ch(x)) = W f(T f(ch(T−1(x)))) by Definition 4.11
= W f(T f(ch(y)))
= S(W f(ch(y))) by Proposition 4.4
≡R S(W f(d))
= S(W f((T f)−1(b′)))
= W f(T f((T f)−1(b′))) by Proposition 4.4
= W f(b′).

Since ch(x) ≺ b ≺ b′, by monotonicity of W f we have

W f(ch(x)) ≡R W f(b) ≡R W f(b′)

as required. ⊣

Proposition 4.22 For any x ∈ B we have stb(x) � stp(x) � ch(x).

Proof. By Propositions 4.3, 4.20, 4.21. ⊣
Now we are ready to lift W f from {0, 1}∗ to B using ch.

Definition 4.12 (Embedding Function) Define the embedding function W : B → W by

W(x) = W f(ch(x)).

Proposition 4.23 Let b ∈ {0, 1}∗. For any x ∈ Tb we have W f(b)RW(x).

Proof. If b � ch(x), i.e., ch(x) is a node in Tb, then W f(b)RW(x) follows from monotonicity. If
ch(x) ≺ b, by Proposition 4.22, stb(x) � ch(x). Hence W f(b) ≡R W f(ch(x)) = W(x) by Definition
4.3. ⊣
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5 Proof of Completeness

Lemma 5.1 The function W is onto.

Proof. Let W = {w0, . . . , wm−1} with the root w0 = 0. By Definition 4.1 W f(0i1) = wi for
0 ≤ i < m. Hence for 0 ≤ i < m, we have

W(0i10ω) = W f(ch(0i10ω)) by Definition 4.12
= W f(stp(0i10ω)) by Proposition 4.20
= W f(0i1) by Definition 4.4
= wi.

Hence the range of W is W . ⊣

Lemma 5.2 The function W is open and continuous. That is, for every b ∈ {0, 1}∗

W(Tb) = {w : W f(b)Rw}.

Proof. Recall that the sets Tb constitute a basis of open sets in B, and the sets {w : W f(b)Rw}
constitute a basis of open sets in K. Consider an arbitrary b ∈ {0, 1}∗. Let y ∈ Tb. By Proposition
4.23 W f(b)RW(y). Hence W(Tb) ⊆ {w | W f(b)Rw}. On the other hand, let w be such that
W f(b)Rw. By Proposition 4.2 there exists an i ≥ 0 such that W f(b0i1) = w. Since b0i10ω ∈ B1, by
Proposition 4.20 we have

W(b0i10ω) = W f(ch(b0i10ω)) = W f(stp(b0i10ω)) = W f(b0i1) = w.

Hence W(Tb) ⊇ {w | W f(b)Rw}. ⊣

Lemma 5.3 T is a continuous function on B.

Proof. Suppose y = T (x) for some x ∈ B. Let Oy be an arbitrary basic open set containing y. It
is easily seen that Oy has the form Tr where r is a prefix of y. Let b′ be a landmark of y in Tr. By
Proposition 4.17 there exists a finite prefix b of x such that T f(b) = b′. By the monotonicity of T f

(Proposition 4.6) Tb (which is open and contains x) is mapped into Tr under T . It follows that T

is continuous. ⊣

Theorem 5.1 The embedding map W : B → W is a functor from 〈B, T 〉 onto K = 〈W, R, S〉.

Proof. By Lemmas 5.1, 5.2 and 5.3, we only need to show that W(T (x)) = S(W(x)) for any x ∈ B.
We have

W(T (x)) = W f(ch(T (x))) by Definition 4.12
= W f(T f(ch(x))) by Definition 4.11
= S(W f(ch(x))) by Proposition 4.4
= S(W(x)). by Definition 4.12

⊣

Theorem 5.2 S4C is complete for dynamic Cantor spaces.

Proof. By Corollary 2.1 and Theorem 5.1. ⊣
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