Skip to main content
Log in

“Principle of Indistinguishability” and Equations of Motion for Particles with Spin

  • Published:
Foundations of Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this work we review the derivation of Dirac and Weinberg equations based on a “principle of indistinguishability” for the (j,0) and (0,j) irreducible representations (irreps) of the homogeneous Lorentz group (HLG). We generalize this principle and explore its consequences for other irreps containing j≥1. We rederive Ahluwalia–Kirchbach equation using this principle and conclude that it yields \(\mathcal{O}(p^{2j} )\) equations of motion for any representation containing spin j and lower spins. We also use the obtained generators of the HLG for a given representation to explore the possibility of the existence of first order equations for that representation. We show that, except for j=\( - \frac{1}{2}\), there exists no Dirac-like equation for the (j,0)⊕(0,j) representation nor for the (\( - \frac{1}{2}\),\( - \frac{1}{2}\)) representation. We rederive Kemmer–Duffin–Petieau (KDP) equation for the (1,0)⊕(\( - \frac{1}{2}\),\( - \frac{1}{2}\))⊕(0,1) representation by this method and show that the (1,\( - \frac{1}{2}\))⊕(\( - \frac{1}{2}\),1) representation satisfies a Dirac-like equation which describes a multiplet of \(j = \frac{3}{2}{\text{ and }}j = \frac{1}{2}\) with masses m and m/2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Johnson and E. C. Sudarshan, “Inconsistency of the local field theory of charged spin-3/2 particles, ” Ann. Phys. 13, 126(1961).

    Google Scholar 

  2. R. D. Peccei, “Chiral Lagrangian calculation of pion-nucleon scattering lengths, ” Phys. Rev. 176, 1812(1968). R. D. Peccei, “Chiral Lagrangian model of single-pion photoproduction, ” Phys. Rev. 181, 1902 (dy1969). G. Velo and D. Zwanziger, “Propagation and quantization of Rarita–Schwinger waves in an external electromagnetic potential, ” Phys. Rev. 186, 1337 (dy1969). C. R. Hagen and W. J. Hurley, “Magnetic moment of a particle with arbitrary spin, ” Phys. Rev. Lett. d24, 1381 (1970). C. R. Hagen, “New inconsistencies in the quantization of spin-3/2 fields, ” Phys. Rev. D d4, 2204 (1971). F. Jones and M. Scadron, “Multipole γNδ form factors and resonant photo-and electroproduction, ” Ann. Phys. 81, 1 (1973). M. El Amiri, J. Pestieau, and G. López Castro, “Delta ++ contribution to the elastic and radiative π+P scattering, ” Nucl. Phys. A 543, 673 (1992). G. López Castro and A. Mariano, “Determination of the δ++ magnetic dipole moment, ” Phys. Lett. B 517, 339 (2001). M. Hernandez, J. L. Lucio, and G. López Castro, “ω- → λKγ and the Omega magnetic moment, ” Phys. Rev. D 44, 794 (1991). V. M. Villanueva, J. A. Nieto, and O. Obregon, “Non-minimal coupling for spin-3/2 fields, ” Rev. Mex. Fis. 48, 123 (2002).

    Google Scholar 

  3. L. M. Nath, B. Etemadi, and J. D. Kimel, “Uniqueness of the interaction involving spin-3/2 particles, ” Phys. Rev. D 3, 2153(1971).

    Google Scholar 

  4. S. Weinberg and E. Witten, “Limits on massless particles, ” Phys. Lett. B 96, 59(1980).

    Google Scholar 

  5. J. Gasser and H. Leutwyler, “Chiral perturbation theory: Expansions in the mass of the strange quark, ” Nucl. Phys. B 250, 465(1985).

    Google Scholar 

  6. J. Gasser, M. E. Sainio, and A. Svarc, “Nucleons with chiral loops, ” Nucl. Phys. B 307, 779(1988).

    Google Scholar 

  7. E. Jenkins and A. V. Manohar, “Baryon chiral perturbation theory using a heavy fermion Lagrangian, ” Phys. Lett. B 255, 558-562 (1991).

    Google Scholar 

  8. E. Jenkins and A. V. Manohar, “Baryon chiral perturbation theory, ” UCSD-PTH-91-30, Proceedings, Workshop on Effective Field Theories of the Standard Model, Dobogoko, Hungary, August 22–26, 1991, U. G. Meissner, ed. (World Scientific, Singapore, 1992), pp. 113-137.

    Google Scholar 

  9. M. Napsuciale and J. L. Lucio, “Spin-3/2 interacting fields and heavy baryon chiral perturbation theory, ” Phys. Lett. B 384, 227-232 (1996). M. Napsuciale and J. L. Lucio, “Heavy baryon spin-3/2 theory and radiative decays of the decuplet, ” Nucl. Phys. B 494, 260-280 (1997).

    Google Scholar 

  10. S. Weinberg, “Feynman rules for any spin, ” Phys. Rev. B 133, 1318(1964).

    Google Scholar 

  11. S. Weinberg, The Quantum Theory of Fields. Vol. 1: Foundations (Cambridge University Press, Cambridge, 1995), p. 609.

    Google Scholar 

  12. L. H. Ryder, Quantum Field Theory (Cambridge University Press, Cambridge, 1985), p. 443.

    Google Scholar 

  13. D. V. Ahluwalia, M. B. Johnson, and T. Goldman, “A Bargmann–Wightman–Wigner type quantum field theory, ” Phys. Lett. B 316, 102(1993).

    Google Scholar 

  14. F. H. Gaioli and E. T. Garcia-Alvarez, “Some remarks about intrinsic parity in Ryder's derivation of the Dirac equation, ” Am. J. Phys. 63, 177(1995).

    Google Scholar 

  15. D. V. Ahluwalia, “Non-locality and gravity-induced CP violation, ” Mod. Phys. Lett. A 13, 3123(1998). D. V. Ahluwalia and M. Kirchbach, “Primordial space-time foam as an origin of cosmological matter-antimatter asymmetry, ” Int. J. Mod. Phys. D 10, 811 (2001) [arXiv:astro-ph/0107246]. D. V. Ahluwalia and M. Kirchbach, “Fermions, bosons, and locality in special relativity with two invariant scales, ” gr-qc/0207004.

    Google Scholar 

  16. H. J. Bhabha, “Equations with two distinct masses, ” Phil. Mag. 43, 33(1952); H. J. Bhabha Rev. Mod. Phys. 17, 200 (1945).

    Google Scholar 

  17. Harish-Chandra, “On relativistic wave equations, ” Phys. Rev. 71, 793-805 (1947).

    Google Scholar 

  18. D. V. Ahluwalia and M. Kirchbach, “(1/2, 1/2) representation space: An ab initio construct, ” Mod. Phys. Lett. A 16, 1377(2001).

    Google Scholar 

  19. W. J. Hurley and E. C. G. Sudarshan, “Algebraic study of a class of relativistic wave equation, ” Ann. Phys. 85, 546(1974).

    Google Scholar 

  20. N. Kemmer, Proc. Roy. Soc. A 173, 91(1939).

    Google Scholar 

  21. R. J. Duffin, “On the characteristic matrices ofcovariant systems, ” Phys. Rev. 54, 1114(1938). G. Petieau, Acad. R. Belg. Cl. Sci. Mem. Collect 8 16(2) (1936).

    Google Scholar 

  22. M. Nowakowski, “The electromagnetic coupling in Kemmer–Duffin–Petiau theory, ” Phys. Lett. A 244, 329(1998).

    Google Scholar 

  23. W. J. Hurley, “Relativistic wave equations for particles with arbitrary spin, ” Phys. Rev. D 4, 3605(1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Napsuciale, M. “Principle of Indistinguishability” and Equations of Motion for Particles with Spin. Foundations of Physics 33, 741–768 (2003). https://doi.org/10.1023/A:1025696823295

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025696823295

Keywords

Navigation