Skip to main content
Log in

Hypercomplexity

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

What is biological complexity? How many sorts exist? Are there levels of complexity? How are they related to one another? How is complexity related to the emergence of new phenotypes? To try to get to grips with these questions, we consider the archetype of a complex biological system, Escherichia coli. We take the position that E. coli has been selected to survive adverse conditions and to grow in favourable ones and that many other complex systems undergo similar selection. We invoke the concept of hyperstructures which constitute a level of organisation intermediate between macromolecules and cells. We also invoke a new concept, competitive coherence, to describe how phenotypes are created by a competition between maintaining a consistent story over time and creating a response that is coherent with respect to both internal and external conditions. We suggest how these concepts lead to parameters suitable for describing the rich form of complexity termed hypercomplexity and we propose a relationship between competitive coherence and emergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B. (1998). The cell as a collection of protein machines: Preparing the next generation of molecular biologists. Cell 92: 291–294.

    Google Scholar 

  • Amar, P., P. Ballet, G. Barlovatz-Meimon, A. Benecke, G. Bernot, Y. Bouligand, P. Bourguine, F. Delaplace, J.-M. Delosme, M. Demarty, I. Fishov, J. Fourmentin-Guilbert, J. Fralick, J.-L. Giavitto, B. Gleyse, C. Godin, R. Incitti, F. Képès, C. Lange, L. Le Sceller, C. Loutellier, O. Michel, F. Molina, C. Monnier, R. Natowicz, V. Norris, N. Orange, H. Pollard, D. Raine, C. Ripoll, J. Rouviere-Yaniv, M. Saier jnr., P. Soler, P. Tambourin, M. Thellier, P. Tracqui, D. Ussery, J.-P. Vannier, J.-C. Vincent, P. Wiggins and A. Zemirline (2002). Hyperstructures, genome analysis and I-cell. Acta Biotheoretica 50: 357–373.

    Article  Google Scholar 

  • Balaban, N.Q., J. Merrin, R. Chait, L. Kowalik and S. Leibler (2004). Bacterial persistence as a phenotypic switch. Science 305: 1622–1625.

    Article  Google Scholar 

  • Baldwin, J.M. (1896a). A new factor in evolution. American Naturalist 30: 536–553.

    Google Scholar 

  • Baldwin, J.M. (1896b). A new factor in evolution. American Naturalist 30: 441–451.

    Google Scholar 

  • Bonner, J.T. (1988). The evolution of complexity. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Booth, I.R. (2002). Stress and the single cell: Intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. International Journal of Food Microbiology 78: 19–30.

    Article  Google Scholar 

  • Bouligand, Y. and V. Norris (2001). Chromosome separation and segregation in dinoflagellates and bacteria may depend on liquid crystalline states. Biochimie 83: 187–192.

    Article  Google Scholar 

  • Bray, D., M.D. Levin and C.L. Morton-Firth (1998). Receptor clustering as a cellular mechanism to control sensitivity. Nature 393: 85–88.

    Article  Google Scholar 

  • Cabrera, J.E. and D.J. Jin (2003). The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues. Molecular Microbiology 50: 1493–1505.

    Article  Google Scholar 

  • Daniel, R.A. and J. Errington (2003). Control of cell morphogenesis in bacteria: Two distinct ways to make a rod-shaped cell. Cell 113: 767–776.

    Article  Google Scholar 

  • Demarty, M., B. Gleyse, D. Raine, C. Ripoll and V. Norris (2002). Modelling and Simulation of Biological Processes in the Context of Genomics. Autrans, France.

  • Fishov, I. and C. Woldringh (1999). Visualization of membrane domains in Escherichia coli. Molecular Microbiology 32: 1166–1172.

    Article  Google Scholar 

  • Guzman, E.C., J.L. Caballero and A. Jimenez-Sanchez (2002). Ribonucleoside diphosphate reductase is a component of the replication hyperstructure in Escherichia coli. Molecular Microbiology 43: 487–495.

    Article  Google Scholar 

  • Hansen, F.G., B.B. Christensen and T. Atlung (1991). The initiator titration model: Computer simulation of chromosome and minichromosome control. Research in Microbiology 142: 161–167.

    Article  Google Scholar 

  • Hartwell, L.H., J.J. Hopfield, S. Leibler and A.W. Murray (1999). From molecular to modular cell biology. Nature 402(6761 Suppl): C47–C52.

    Google Scholar 

  • Kauffman, S. (1996). At home in the Universe, the search for the laws of complexity., Penguin, London.

    Google Scholar 

  • Kennell, D. and H. Riezman (1977). Transcription and translation frequencies of the Escherichia coli lac operon. Journal of Molecular Biology 114: 1–21.

    Article  Google Scholar 

  • Kirschner, M. and J. Gerhart (1998). Evolvability. Proceedings of the National Academy of Science U.S.A. 95: 8420–8427.

    Google Scholar 

  • Langton, C.G. (1990). Computation at the edge of chaos – phase-transitions and emergent computation. Physica. D 42: 12–37.

    Article  Google Scholar 

  • Lemke, J.L. (2000). Opening up closure. Semiotics across scales. Annals New York Academy Sciences 901: 100–111.

    Google Scholar 

  • Mathews, C.K. (1988). Microcompartmentation of DNA precursors. In Microcompartmentation (Jones, D.P., ed.), pp. 155–169. Boca Raton. CRC Press Inc..

  • Mayer, F. (2003). Cytoskeletons in prokaryotes. Cell Biology International 27: 429–438.

    Article  Google Scholar 

  • Mayr, E. (1954). Change of genetic environment and evolution. In Evolution as a process. (Huxley, J., Hardy, A.C. and Ford, E.B., eds.), pp. 157–180. London. Allen and Unwin.

  • Meinhardt, H. and P.A.J. de Boer (2001). Pattern formation in Escherichia coli: A model for the pole-to-pole oscillations of Min proteins and the localization of the division site. Proceedings of the National Academy of Science U.S.A.. 98: 14202–14207.

    Google Scholar 

  • Messer, W. and C. Weigel (1997). DnaA initiator–also a transcription factor. Molecular Microbiology 24: 1–6.

    Article  Google Scholar 

  • Mileykovskaya, E. and W. Dowhan (2005). Role of membrane lipids in bacterial division-site selection. Current Opinion in Microbiology 8: 135–142.

    Article  Google Scholar 

  • Minsky, A., E. Shimoni and D. Frenkiel-Krispin (2002). Stress, order and survival. Nat. Rev. Mol. Cell. Biol. 3: 50–60.

    Article  Google Scholar 

  • Molina, F. and K. Skarstad (2004). Replication fork and SeqA focus distributions in Escherichia coli suggest a replication hyperstructure dependent on nucleotide metabolism. Molecular Microbiology 52: 1597–1612.

    Article  Google Scholar 

  • Müller-Hill, B. (1998). The function of auxiliary operators. Molecular Microbiology 29: 13–18.

    Google Scholar 

  • Norris, V. (1989). A calcium flux at the termination of replication triggers cell division in E. coli. Cell Calcium 10: 511–517.

    Article  Google Scholar 

  • Norris, V. (1998). Modelling E. coli: The concept of competitive coherence. Comptes Rendus de l'Academie des Sciences 321: 777–787.

    Google Scholar 

  • Norris, V., P. Amar, G. Bernot, A. Delaune, C. Derue, A. Cabin-Flaman, M. Demarty, Y. Grondin, G. Legent, C. Monnier, H. Pollard and D. Raine (2004a). Questions for cell cyclists. Journal of Biological Physics and Chemistry 4: 124–130.

    Google Scholar 

  • Norris, V., M. Demarty, D. Raine, A. Cabin-Flaman and L. Le Sceller (2002a). Hypothesis: Hyperstructures regulate initiation in Escherichia coli and other bacteria. Biochimie 84: 341–347.

    Article  Google Scholar 

  • Norris, V., J. Fralick and A. Danchin (2000). A SeqA hyperstructure and its interactions direct the replication and sequestration of DNA. Molecular Microbiology 37: 696–702.

    Article  Google Scholar 

  • Norris, V., P. Gascuel, J. Guespin-Michel, C. Ripoll and M.H. Saier Jr. (1999). Metabolite-induced metabolons: The activation of transporter-enzyme complexes by substrate binding. Molecular Microbiology 31: 1592–1595.

    Article  Google Scholar 

  • Norris, V. and G.J. Hyland (1997). Do bacteria “sing”? Molecular Microbiology 24: 879–880.

    Article  Google Scholar 

  • Norris, V. and M.S. Madsen (1995). Autocatalytic gene expression occurs via transertion and membrane domain formation and underlies differentiation in bacteria: A model. Journal of Molecular Biology 253: 739–748.

    Article  Google Scholar 

  • Norris, V., G. Misevic, J.M. Delosme and A. Oshima (2002b). Hypothesis: A phospholipid translocase couples lateral and transverse bilayer asymmetries in dividing bacteria. Journal of Molecular Biology 318: 455–462.

    Article  Google Scholar 

  • Norris, V., C. Woldringh and E. Mileykovskaya (2004b). A hypothesis to explain division site selection in Escherichia coli by combining nucleoid occlusion and Min. FEBS Letters 561: 3–10.

    Article  Google Scholar 

  • Ohsumi, K., M. Yamazoe and S. Hiraga (2001). Different localization of SeqA-bound nascent DNA clusters and MukF-MukE-MukB complex in Escherichia coli cells. Molecular Microbiology 40: 835–845.

    Article  Google Scholar 

  • Onogi, T., H. Niki, M. Yamazoe and S. Hiraga (1999). The assembly and migration of SeqA-Gfp fusion in living cells of Escherichia coli. Molecular Microbiology 31: 1775–1782.

    Article  Google Scholar 

  • Peter, B.J., J. Arsuaga, A.M. Breier, A.B. Khodursky, P.O. Brown and N.R. Cozzarelli (2004). Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biology 5: R87.

    Article  Google Scholar 

  • Raine, D.J., Y. Grondin, M. Thellier and V. Norris (2003). Networks as constrained thermodynamic systems. Comptes Rendus de l'Academie des Sciences 326: 65–74.

    Google Scholar 

  • Ripoll, C., V. Norris and M. Thellier (2004). Ion condensation and signal transduction. BioEssays. 26: 549–557.

    Article  Google Scholar 

  • Rocha, E., J. Fralick, G. Vediyappan, A. Danchin and V. Norris (2003). A strand-specific model for chromosome segregation in bacteria. Molecular Microbiology 49: 895–903.

    Article  Google Scholar 

  • Segre, D., D. Ben-Eli and D. Lancet (2000). Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies. Proceedings of the National Academy of Science U.S.A. 97: 4112–4117.

    Google Scholar 

  • Shepherd, N., P. Dennis and H. Bremer (2001). Cytoplasmic RNA polymerase in Escherichia coli. Journal of Bacteriology 183: 2527–2534.

    Article  Google Scholar 

  • Stassinopoulos, D. and P. Bak (1995). Democratic reinforcement: A principle for brain function. Physical Review E 51: 5033–5039.

    Article  Google Scholar 

  • Stickle, D.F., K.M. Vossen, D.A. Riley and M.G. Fried (1994). Free DNA concentration in E. coli estimated by an analysis of competition for DNA binding proteins. Journal of Theoretical Biology 168: 1–12.

    Article  Google Scholar 

  • Thanedar, S. and W. Margolin (2004). FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli. Current Biology 14: 1167–1173.

    Article  Google Scholar 

  • Tolker-Nielsen, T., K. Holmstrom, L. Boe and S. Molin (1998). Non-genetic population heterogeneity studied by in situ polymerase chain reaction. Molecular Microbiology 27: 1099–1105.

    Article  Google Scholar 

  • Travers, A. and G. Muskhelishvili (2005). DNA supercoiling – a global transcriptional regulator for enterobacterial growth? Nature Reviews Microbiology 3: 157–169.

    Article  Google Scholar 

  • Van Regenmortel, M.H.V. (2004). Modelling and Simulation of Biological Processes in the Context of Genomics, Evry, France.

  • Vind, J., M.A. Sorenson, M.D. Rasmussen and S. Pedersen (1993). Synthesis of proteins in Escherichia coli is limited by the concentration of free ribosomes. Expression from reporter genes does not always reflect functional mRNA levels. Journal of Molecular Biology 231: 678–688.

    Article  Google Scholar 

  • Werner, R. (1971). Nature of DNA precursors. Nature New Biology 233: 99–103.

    Google Scholar 

  • Wiggins, P.M. (1990). Role of water in some biological processes. Microbiological Reviews 54: 432–449.

    Google Scholar 

  • Woldringh, C.L. and N. Nanninga. (1985). Structure of the nucleoid and cytoplasm in the intact cell. In Molecular Cytology of Escherichia coli. (Nanninga, N., ed.), pp. 161–197. London. Academic Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vic Norris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norris, V., Cabin, A. & Zemirline, A. Hypercomplexity. Acta Biotheor 53, 313–330 (2005). https://doi.org/10.1007/s10441-005-4882-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-005-4882-3

Keywords

Navigation