Skip to main content
Log in

Ernst Mayr, the tree of life, and philosophy of biology

  • Published:
Biology & Philosophy Aims and scope Submit manuscript

Abstract

Ernst Mayr’s influence on philosophy of biology has given the field a particular perspective on evolution, phylogeny and life in general. Using debates about the tree of life as a guide, I show how Mayrian evolutionary biology excludes numerous forms of life and many important evolutionary processes. Hybridization and lateral gene transfer are two of these processes, and they occur frequently, with important outcomes in all domains of life. Eukaryotes appear to have a more tree-like history because successful lateral events tend to occur among more closely related species, or at a lower frequency, than in prokaryotes, but this is a difference of degree rather than kind. Although the tree of life is especially problematic as a representation of the evolutionary history of prokaryotes, it can function more generally as an illustration of the limitations of a standard evolutionary perspective. Moreover, for philosophers, questions about the tree of life can be applied to the Mayrian inheritance in philosophy of biology. These questions make clear that the dichotomy of life Mayr suggested is based on too narrow a perspective. An alternative to this dichotomy is a multidimensional continuum in which different strategies of genetic exchange bestow greater adaptiveness and evolvability on prokaryotes and eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. See Haffer (2007) for a detailed biography of Mayr’s life and work.

  2. Mayr’s emphasis on the dynamic dispersal of organisms led him to resist tectonic theory until well into the 60s (Mayr 1952a, b, 1972; Bock 1994).

  3. See Beurton (2002) for a discussion of the shifts in Mayr’s definition and their conceptual consequences.

  4. This is a problem too for animal and plant species, but Mayr did his best to deal with it when discussing them.

  5. Mayr mostly ignored asexual reproduction in animals (see Avise 2008).

  6. This is surprising, because prokaryotes do not normally exhibit the cytoskeletal structures associated with tubulin and actin, and do not have genes for these proteins.

References

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141

    Article  Google Scholar 

  • Adl SM, Simpson AGB, Farmer MA et al (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of prokaryotes. J Eukaryot Microbiol 52:399–451

    Article  Google Scholar 

  • Amundson R (1998) Typology reconsidered: two doctrines on the history of evolutionary biology. Biol Philos 13:153–177

    Article  Google Scholar 

  • Andam CP, Williams D, Gogarten JP (2010) Natural taxonomy in light of horizontal gene transfer. Biol Philos (this issue). doi:10.1007/s10539-010-9212-8

  • Anderson E (1948) Hybridization of the habitat. Evolution 2:1–9

    Article  Google Scholar 

  • Anderson E (1949) Introgressive hybridization. Wiley, NY

    Google Scholar 

  • Anderson E (1953) Introgressive hybridization. Biol Rev 28:280–307

    Article  Google Scholar 

  • Anderson E, Stebbins GL (1954) Hybridization as an evolutionary stimulus. Evolution 8:378–388

    Article  Google Scholar 

  • Andersson JO (2009) Gene transfer and diversification of microbial eukaryotes. Annu Rev Microbiol 63:177–193

    Article  Google Scholar 

  • Andersson JO, Doolittle WF, Nesbø CL (2001) Are there bugs in our genome? Science 292:1848–1850

    Article  Google Scholar 

  • Andersson JO, Hirt RP, Foster PG, Roger AJ (2006) Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Curr Biol 13:94–104

    Article  Google Scholar 

  • Arnold ML (2000) Anderson’s paradigm: Louisiana irises and the study of evolutionary phenomena. Mol Ecol 9:1687–1698

    Article  Google Scholar 

  • Arnold ML (2006) Evolution through genetic exchange. Oxford University Press, Oxford

    Google Scholar 

  • Arnold ML, Bulger MR, Burke JM, Hempel AL, Williams JH (1999) Natural hybridization: how low can you go and still be important? Ecology 80:371–381

    Article  Google Scholar 

  • Avise JC (2008) Clonality: the genetics ecology, and evolution of sexual abstinence in vertebrate animals. Oxford University Press, Oxford

    Google Scholar 

  • Bapteste E, O’Malley MA, Beiko RM et al (2009) Prokaryote evolution and the tree of life are two different things. Biol Direct 4:34. doi:10.1186/1745-6150-4-34

    Article  Google Scholar 

  • Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568

    Article  Google Scholar 

  • Bendel M, Kienast F, Rigling D (2006) Genetic population structure of three Armillaria species at the landscape scale: a case study from Swiss Pinus mugo forests. Mycol Res 110:705–712

    Google Scholar 

  • Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD (2004) Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci USA 101:17747–17752

    Article  Google Scholar 

  • Beurton PJ (2002) Ernst May through time on the biological species concept—a conceptual analysis. Theory Biosci 121:81–98

    Article  Google Scholar 

  • Blaxter M (2007) Symbiont genes in host genomes: fragments with a future? Cell Host Microbe 2:211–213

    Article  Google Scholar 

  • Bock WJ (1994) Ernst Mayr, naturalist: his contributions to systematics and evolution. Biol Philos 9:267–327

    Article  Google Scholar 

  • Bromham L, Penny D (2003) The modern molecular clock. Nat Rev Genet 4:216–224

    Article  Google Scholar 

  • Burgess R, Yang Z (2008) Estimation of hominoid ancestral population sizes under Bayesian coalescent models incorporating mutation rate variation and sequencing errors. Mol Biol Evol 25:1979–1994

    Article  Google Scholar 

  • Burkhardt RW Jr (1994) Ernst Mayr: Biologist-historian. Biol Philos 9:359–371

    Article  Google Scholar 

  • Cain J (1994) Ernst Mayr as community architect: launching the society for the study of evolution and the journal Evolution. Biol Philos 9:387–427

    Article  Google Scholar 

  • Cain J (2009) Rethinking the synthesis period in evolutionary studies. J Hist Biol 42:621–648

    Article  Google Scholar 

  • Casteleyn G, Adams NG, Vanormelingen P, Debeer A-E, Sabbe K, Vyverman W (2009) Natural hybrids in the marine diatom Pseudo-nitzschia pungens (Bacillariophyceae): genetic and morphological evidence. Protist 160:343–354

    Article  Google Scholar 

  • Chung C (2003) On the origin of the typological/population distinction in Ernst Mayr’s changing views of species, 1942–1959. Stud Hist Philos Biol Biomed Sci 34:277–296

    Article  Google Scholar 

  • Cracraft J (2002) The seven great questions of systematic biology: an essential foundation for conservation and the sustainable use of biodiversity. Ann Mo Bot Gard 89:127–144

    Article  Google Scholar 

  • D’Alelio D, Amato A, Kooistra WHCF, Procaccini G, Casotti R, Montresor M (2009) Internal transcribed spacer polymorphism in Pseudo-nitzschia multistriata (Bacillariophyceae) in the Gulf of Naples: recent divergence or intraspecific hybridization? Protist 160:9–20

    Article  Google Scholar 

  • Dale C, Moran N (2006) Molecular interactions between bacterial symbionts and their hosts. Cell 126:453–465

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life (1st ed). John Murray, London

    Google Scholar 

  • Dawkins R (2003) The devils chaplain: reflections on hope, lies, science, and love. Houghton Mifflin, Boston

  • Derelle E, Ferraz C, Rombauts S et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103:11647–11652

    Article  Google Scholar 

  • Dietrich MR (1998) Paradox and persuasion: negotiating the place of molecular evolution within evolutionary biology. J Hist Biol 31:85–111

    Article  Google Scholar 

  • Dobzhansky T (1973) Nothing in biology makes sense except in light of evolution. Am Biol Teach 35:125–129

    Google Scholar 

  • Doolittle WF (2009) The practice of classification and the theory of evolution, and what the demise of Charles Darwin’s tree of life hypothesis means for both of them. Phil Trans R Soc B 364:2221–2228

    Article  Google Scholar 

  • Doolittle WF (2010) The attempt on the life of the Tree of Life: science, philosophy and politics. Biol Philos (this issue). doi:10.1007/s10539-010-9210-x

  • Doolittle WF, Bapteste E (2007) Pattern pluralism and the Tree of Life hypothesis. Proc Natl Acad Sci USA 104:2043–2049

    Article  Google Scholar 

  • Doolittle WF, Zhaxybayeva O (2010) Metagenomics and the units of biological organization. BioScience 60:102–112

    Google Scholar 

  • Dowling TE, Secor CL (1997) The role of hybridization and introgression in the diversification of animals. Annu Rev Ecol Syst 28:593–619

    Article  Google Scholar 

  • Dupré J (1993) The disorder of things: metaphysical foundations of the disunity of science. Harvard University Press, Cambridge

    Google Scholar 

  • Eldredge N (2005) Darwin: discovering the tree of life. Norton, NY

    Google Scholar 

  • Ereshefsky M (1992) Eliminative pluralism. Philos Sci 59:671–690

    Article  Google Scholar 

  • Ereshefsky M (2010) Microbiology and the species problem. Biol Philos (this issue). doi:10.1007/s10539-010-9211-9

  • Fernholm B, Bremer K, Jörnvall H (eds) (1989) The hierarchy of life: molecules and morphologies in phylogenetic analysis. Elsevier, Amsterdam

    Google Scholar 

  • Friesen TL, Stukenbrock EH, Liu Z et al (2006) Emergence of a new disease as a result of interspecific virulence transfer. Nat Genet 38:953–956

    Article  Google Scholar 

  • Giraud T, Refrégier G, Le Gac M, de Vienne DM, Hood ME (2008) Speciation in fungi. Fungal Genet Biol 45:791–802

    Article  Google Scholar 

  • Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320:1210–1213

    Article  Google Scholar 

  • Glass NL, Dementhon K (2006) Non-self recognition and programmed cell death in filamentous fungi. Curr Opin Microbiol 9:553–558

    Article  Google Scholar 

  • Glass NL, Kaneko I (2003) Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot Cell 2:1–8

    Article  Google Scholar 

  • Goremykin VV, Salamini F, Velasco R, Viola R (2008) Mitochondrial DNA of Vitis vinifera and the issue or rampant horizontal gene transfer. Mol Biol Evol 26:99–110

    Article  Google Scholar 

  • Grene M, Depew D (2004) The philosophy of biology: an episodic history. Cambridge University Press, Cambridge

    Google Scholar 

  • Guljamow A, Jenke-Kodama H, Saumweber H et al (2007) Horizontal gene transfer of two cytoskeletal elements from a eukaryote to a cyanobacterium. Curr Biol 17:R757–R759

    Article  Google Scholar 

  • Haffer J (2007) Ornithology, evolution, and philosophy: the life and science of Ernst Mayr 1904–2005. Springer, Berlin

    Google Scholar 

  • Hagan JB (1999) Naturalists, molecular biologists, and the challenges of molecular evolution. J Hist Biol 32:321–341

    Article  Google Scholar 

  • Hart MW, Grosberg RK (2009) Caterpillars did not evolve from onychophorans by hybridogenesis. Proc Nat Acad Sci USA 106:19906–19909

    Article  Google Scholar 

  • Hart MC, Green DH, Bresnan E, Bolch CJ (2007) Large subunit ribosomal RNA gene variation and sequence heterogeneity of Dinophysis (Dinophyceae) species from Scottish coastal waters. Harmful Algae 6:271–287

    Article  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 12:1422–1423

    Article  Google Scholar 

  • Heiser CB (1973) Introgression re-examined. Bot Rev 39:347–366

    Article  Google Scholar 

  • Hotopp JCD, Clark ME, Oliveira DCSG et al (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756

    Article  Google Scholar 

  • Hull DL (1994) Ernst Mayr’s influence on the history and philosophy of biology: a personal memoir. Biol Philos 9:375–386

    Article  Google Scholar 

  • Jenkins C, Samudrala R, Anderson I et al (2002) Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc Natl Acad Sci USA 99:17049–17054

    Article  Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618

    Article  Google Scholar 

  • Kitcher P (1987) Ghostly whispers: Mayr, Ghiselin, and the ‘philosophers’ on the ontological status of species. Biol Philos 2:184–192

    Article  Google Scholar 

  • Koblmüller S, Duftner N, Sefc KM et al (2007) Reticulate phylogeny of gastropod-shell-breeding cichlids from Lake Tanganyika – the result of repeated introgressive hybridization. BMC Evol Biol 7:7. doi:10.1186/1471-2148-7-7

  • Kohn LM (2005) Mechanisms of fungal speciation. Annu Rev Phytopathol 43:279–308

    Article  Google Scholar 

  • Kondrashov FA, Koonin EV, Morgunmov IG, Ginogenova TV, Kondrashova MN (2006) Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation. Biol Direct 1:31. doi:101186/1745-6150-1-31

    Article  Google Scholar 

  • Lan R, Reeves PR (2000) Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol 8:396–401

    Article  Google Scholar 

  • Lane CE, Archibald JM (2008) The eukaryotic tree of life: Endosymbiosis takes its TOL. Trends Ecol Evol 23:268–275

    Article  Google Scholar 

  • Lapierre P, Gogarten JP (2008) Estimating the size of the bacteria pan-genome. Trends Genet 25:107–110

    Article  Google Scholar 

  • Lawrence JG (2002) Gene transfer in bacteria: speciation without species. Theor Popul Biol 61:449–460

    Article  Google Scholar 

  • Legendre P (2000) Reticulate evolution: from bacteria to philosopher. J Classif 17:153–157

    Article  Google Scholar 

  • Lewens T (2009) Evo-devo and ‘typological thinking’: an exculpation. J Exp Zool (Mol Dev Evol) 312B:1–8

    Article  Google Scholar 

  • Lewontin RC, Birch LC (1966) Hybridization as a source of variation for adaptation to new environments. Evolution 20:315–336

    Article  Google Scholar 

  • Loftus B, Anderson I, Davies R et al (2005) The genome of the protist parasite Entamoeba histolytica. Nature 433:865–868

    Article  Google Scholar 

  • Mallet J (1995) A species definition for the modern synthesis. Trends Ecol Evol 10:294–299

    Article  Google Scholar 

  • Mallet J (2005) Hybridization as invasion of the genome. Trends Ecol Evol 20:229–237

    Article  Google Scholar 

  • Mallet J (2007) Hybrid speciation. Nature 446:279–283

    Article  Google Scholar 

  • Mallet J (2008) Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Phil Trans R Soc B 363:2971–2986

    Article  Google Scholar 

  • Mallet J (2010) Why was Darwin’s view of species rejected by twentieth century biologists? Biol Philos (this issue). doi:10.1007/s10539-010-9213-7

  • Mallet J, Beltrán M, Neukirchen W, Linares M (2007) Natural hybridization in heliconiine butterflies: the species boundary as continuum. BMC Evol Biol 7:28. doi:101186/1471-2148-7-28

    Article  Google Scholar 

  • Martin W (2005) Lateral gene transfer and other possibilities. Heredity 94:565–566

    Article  Google Scholar 

  • Martin AP, Costello EK, Meyer AF, Nemergut DR, Schmidt SK (2004) The rate and pattern of cladogenesis in microbes. Evolution 58:946–955

    Google Scholar 

  • Maynard Smith J, Feil EJ, Smith NH (2000) Population structure and evolutionary dynamics of pathogenic bacteria. BioEssays 22:1115–1122

    Article  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species from the viewpoint of a zoologist. Columbia University Press, NY

    Google Scholar 

  • Mayr E (1945) Birds of paradise. Nat Hist Mag 54:264–276

    Google Scholar 

  • Mayr E (1946) History of the North American bird fauna. Wilson Bull 58:3–41

    Google Scholar 

  • Mayr E (1952a) Introduction. In: Mayr E (ed) The problem of land connections across the South Atlantic, with special reference to the Mesozoic. Bull Am Mus Nat Hist 99:85

    Google Scholar 

  • Mayr E (1952b) Conclusion. In: Mayr E (ed), The problem of land connections across the South Atlantic, with special reference to the Mesozoic. Bull Am Mus Nat Hist 99:255–258

    Google Scholar 

  • Mayr E (1953) Comments on evolutionary literature. Evolution 7:273–281

    Article  Google Scholar 

  • Mayr E (1959) Trends in avian systematics. Ibis 101:293–302

    Google Scholar 

  • Mayr E (1961) Cause and effect in biology. Science 134:1501–1506

    Article  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

    Google Scholar 

  • Mayr E (1964) The evolution of living systems. Proc Natl Acad Sci USA 51:934–941

    Article  Google Scholar 

  • Mayr E (1965) Classification and phylogeny. Am Zool 5:165–174

    Google Scholar 

  • Mayr E (1968) Illiger and the biological species concept. J Hist Biol 1:163–178

    Article  Google Scholar 

  • Mayr E (1969) Footnotes on the philosophy of biology. Philos Sci 36:197–202

    Article  Google Scholar 

  • Mayr E (1972) Continental drift and the history of the Australian bird fauna. Emu 72:26–28

    Article  Google Scholar 

  • Mayr E (1981) Biological classification: toward a synthesis of opposing methodologies. Science 214:510–516

    Article  Google Scholar 

  • Mayr E (1982) The growth of biological thought: diversity, evolution, and inheritance. Harvard University Press, Cambridge

    Google Scholar 

  • Mayr E (1984) The contributions of ornithology to biology. Bioscience 34:250–255

    Article  Google Scholar 

  • Mayr E (1987) The ontological status of species: scientific progress and philosophical terminology. Biol Philos 2:145–166

    Article  Google Scholar 

  • Mayr E (1988) Toward a new philosophy of biology: observations of an evolutionist. Harvard University Press, Cambridge

    Google Scholar 

  • Mayr E (1989) A new classification of the living birds of the world. Auk 106:508–512

    Google Scholar 

  • Mayr E (1990) A natural system of organisms. Nature 348:491

    Article  Google Scholar 

  • Mayr E (1991) More natural classification. Nature 353:122

    Article  Google Scholar 

  • Mayr E (1992) Darwin’s principle of divergence. J Hist Biol 25:343–359

    Article  Google Scholar 

  • Mayr E (1994) Reasons for the failures of theories. Philos Sci 61:529–533

    Article  Google Scholar 

  • Mayr E (1995) Darwin’s impact on modern thought. Proc Am Philos Soc 139:317–325

    Google Scholar 

  • Mayr E (1996) What is a species, and what is not? Philos Sci 63:262–277

    Article  Google Scholar 

  • Mayr E (1998a) Two empires or three? Proc Natl Acad Sci USA 95:9720–9723

    Article  Google Scholar 

  • Mayr E (1998b) This is biology. Harvard University Press, Cambridge

    Google Scholar 

  • Mayr E (2001a) What evolution is. Basic Books, NY

    Google Scholar 

  • Mayr E (2001b) What evolution is. Interview with Ernst Mayr. http://www.edge.org/3rd_culture/mayr/mayr_print.html

  • Mayr E (2001c) The philosophical foundations of Darwinism. Proc Am Philos Soc 145:488–495

    Google Scholar 

  • Mayr E (2002) Interview with Ernst Mayr. BioEssays 24:960–973

    Article  Google Scholar 

  • Mayr E (2004a) What makes biology unique? Considerations on the autonomy of a scientific discipline. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Mayr E (2004b) The evolution of Ernst: interview with Ernst Mayr. Scientific American, July 6th. http://www.scientificamerican.com/article.cfm?id=the-evolution-of-ernst-in

  • Mayr E (2004c [2000]) The grand old man of evolution (interview conducted by Shermer M, Sulloway FJ). Sceptic 8:76–82. Reprinted online at: http://www.skeptic.com/eskeptic/04-07-05

  • Mayr E, Bock WJ (1994) Provisional classifications v standard avian sequences: Heuristics and communication in ornithology. Ibis 136:12–18

    Article  Google Scholar 

  • Mayr E, Gilliard ET (1952) Altitudinal hybridization in New Guinea honeyeaters. Condor 54:325–337

    Article  Google Scholar 

  • McBreen K, Lockhart PJ (2006) Reconstructing reticulate evolutionary histories of plants. Trends Plant Sci 11:398–404

    Article  Google Scholar 

  • McLaughlin DJ, Hibbett DS, Lutzoni F, Spatafora JW, Vilgalys R (2009) The search for the fungal tree of life. Trends Microbiol 17:488–497

    Article  Google Scholar 

  • Mishler BD, Donaghue MJ (1982) Species concepts: a case for pluralism. Syst Zool 31:491–503

    Article  Google Scholar 

  • Moran NA (2006) Symbiosis. Curr Biol 16:R866–R871

    Article  Google Scholar 

  • Nakashima K, Yamada L, Satou Y, Azuma J, Satoh N (2004) The evolutionary origin of animal cellulose synthase. Dev Genes Evol 214:81–88

    Article  Google Scholar 

  • Novo M, Bigey F, Beyne E et al (2009) Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC118. Proc Natl Acad Sci USA 106:16333–16338

    Article  Google Scholar 

  • Parfrey LW, Barbero E, Lasser E et al (2006) Evaluating support for the current classification of eukaryotic diversity. PLoS Genet 2(12):e220

    Article  Google Scholar 

  • Patterson N, Richter DJ, Gnerre S et al (2006) Genetic evidence for complex speciation of humans and chimpanzees. Nature 441:1103–1108

    Article  Google Scholar 

  • Petersen RH, Hughes KW (1999) Species and speciation in mushrooms: development of a species concept poses difficulties. Bioscience 49:440–452

    Article  Google Scholar 

  • Presgraves DC, Yi SV (2009) Doubts about complex speciation between humans and chimpanzees. Trends Ecol Evol 24:533–540

    Article  Google Scholar 

  • Provine WB (1981) Epilogue (excerpt). In: Mayr E, Provine WB (eds) The evolutionary synthesis. Bull Am Acad Arts Sci 34:17–32 (pp. 25–32)

  • Raper JR, Baxter MG, Ellingboe AH (1960) The genetic structure of the incompatibility factors of Schizophyllum commune: the A-factor. Proc Natl Acad Sci USA 46:833–842

    Article  Google Scholar 

  • Ricard G, McEwan NR, Dutilh BE et al (2006) Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. BMC Genom 7:22. doi:10186/1471-2164-7-22

    Article  Google Scholar 

  • Richards TA, Dacks JB, Jenkinson JM et al (2006) Evolution of filamentous plant pathogens: gene exchange across kingdoms. Curr Biol 16:1857–1864

    Article  Google Scholar 

  • Richards TA, Soanes DM, Foster PG et al (2009) Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. Plant Cell 21:1897–1911

    Article  Google Scholar 

  • Richardson AO, Palmer JD (2007) Horizontal gene transfer in plants. J Exp Bot 58:1–9

    Google Scholar 

  • Rieppel O (2010) The series, the network, and the tree: changing metaphors of order in nature. Biol Philos (this issue). doi:10.1007/s10539-010-9216-4

  • Rieseberg LH (1997) Hybrid origins of plant species. Annu Rev Ecol Syst 28:359–389

    Article  Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    Article  Google Scholar 

  • Rieseberg LH, Raymond O, Rosenthal DM et al (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216

    Article  Google Scholar 

  • Ros VID, Hurst GDD (2009) Lateral gene transfer between prokaryotes and multicellular eukaryotes: ongoing and significant? BMC Biol 7:20. doi:10.1186/1741-7007-7-20

    Article  Google Scholar 

  • Rosewich UL, Kistler HC (2000) Role of horizontal gene transfer in the evolution of fungi. Annu Rev Phytopathol 38:325–363

    Article  Google Scholar 

  • Salzberg SL, White O, Peterson J, Eisen JA (2001) Microbial genes in the human genome: lateral transfer or gene loss? Science 292:1903–1906

    Article  Google Scholar 

  • Sanders IR (2006) Rapid disease emergence through horizontal gene transfer between eukaryotes. Trends Ecol Evol 21:656–658

    Article  Google Scholar 

  • Sapp J (2009) The new foundations of evolution: on the tree of life. Oxford University Press, Oxford

    Google Scholar 

  • Schardl CL, Craven KD (2003) Interspecific hybridization in plant-associated fungi and oomycetes: a review. Mol Ecol 12:2861–2873

    Article  Google Scholar 

  • Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323:737–741

    Article  Google Scholar 

  • Scholl EH, Thorne JL, McCarter JP, Bird DM (2003) Horizontally transferred genes in plant-parasitic nematodes: a high-throughput genomic approach. Genome Biol 4:R39

    Article  Google Scholar 

  • Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19:198–207

    Article  Google Scholar 

  • Simpson AGB, Roger AJ (2004) The real ‘kingdoms’ of eukaryotes. Curr Biol 14:R693–R696

    Article  Google Scholar 

  • Smith ML, Bruhn JN, Anderson JB (1992) The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356:428–431

    Article  Google Scholar 

  • Smocovitis VB (1992) Unifying biology: the evolutionary synthesis and evolutionary biology. J Hist Biol 25:1–65

    Article  Google Scholar 

  • Smocovitis VB (1997) G. Ledyard Stebbins, Jr. and the evolutionary synthesis (1924–1950) (1997). Am J Bot 84:1625–1637

    Google Scholar 

  • Sneath PHA (1975) Cladistic representation of reticulate evolution. Syst Zool 24:360–368

    Article  Google Scholar 

  • Sneath PHA (2000) Reticulate evolution in bacteria and other organisms: how can we study it? J Classif 17:159–163

    Article  Google Scholar 

  • Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

    Article  Google Scholar 

  • Spratt BG, Hanage WP, Feil EJ (2001) The relative contributions of recombination and point mutation to the diversification of bacterial clones. Curr Opin Microbiol 4:602–606

    Article  Google Scholar 

  • Stanhope MJ, Lupas A, Italia MJ et al (2001) Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 411:940–944

    Article  Google Scholar 

  • Stebbins GL (1959) The role of hybridization in evolution. Proc Am Phil Soc 103:231–251

    Google Scholar 

  • Stebbins GL (1985) Polyploidy, hybridization, and the invasion of new habitats. Ann Mo Bot Gard 72:824–832

    Article  Google Scholar 

  • Syvanen M (1984) The evolutionary implications of mobile genetic elements. Annu Rev Genet 18:271–293

    Article  Google Scholar 

  • Syvanen M (1987) Molecular clocks and evolutionary relationships: possible distortions due to horizontal gene flow. J Mol Evol 26:16–23

    Article  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S et al (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    Article  Google Scholar 

  • Walton JD (2000) Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet Biol 30:167–171

    Article  Google Scholar 

  • Weber M (2005) Philosophy of experimental biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Wertz RE, Goldstone C, Gordon DM, Riley MA (2003) A molecular phylogeny of enteric bacteria and implications for a bacterial species concept. J Evol Biol 16:1236–1248

    Article  Google Scholar 

  • Whitman WB (2009) The number of prokaryotes on earth (and why we care). In: Presentation given at Dalhousie University, July 24

  • Williamson DI (2009) Caterpillars evolved from onychophorans by hybridogenesis. Proc Natl Acad Sci USA 106:15786–15790. doi:10.1073/pnas.0908357106

    Google Scholar 

  • Winsor MP (2003) Non-essentialist methods in pre-Darwinian taxonomy. Biol Philos 18:387–400

    Article  Google Scholar 

  • Winsor MP (2006) The creation of the essentialism story: an exercise in metahistory. Hist Phil Life Sci 28:149–174

    Google Scholar 

  • Woese CR (1996) Phylogenetic trees: Whither microbiology? Curr Biol 6:1060–1063

    Article  Google Scholar 

  • Won H, Renner SS (2003) Horizontal gene transfer from flowering plants to Gnetum. Proc Natl Acad Sci USA 100:10824–10829

    Article  Google Scholar 

  • Zeyl C (2009) The role of sex in fungal evolution. Curr Opin Microbiol 12:592–598

    Article  Google Scholar 

Download references

Acknowledgments

This paper was presented at the Halifax 2009 meeting of the Questioning the Tree of Life Network, sponsored by the Leverhulme Trust. I am grateful to the audience there for comments and also to the B&P referees who helped me sort out several points and avoid a number of errors. I owe many thanks to John Dupré, Sabina Leonelli, the BMBF Study Group for Evolution and Classification in Biology, Linguistics and the History of Science, and the ISHPSSB 2009 audience for discussion of previous versions of this paper. I also gratefully acknowledge the British Academy, which funded the presentation of this paper in Brisbane at ISHPSSB. The research for all these versions was funded by the ESRC as part of its programme at Egenis, University of Exeter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maureen A. O’Malley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Malley, M.A. Ernst Mayr, the tree of life, and philosophy of biology. Biol Philos 25, 529–552 (2010). https://doi.org/10.1007/s10539-010-9214-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10539-010-9214-6

Keywords

Navigation