Skip to main content
Log in

Axiomatizations of Hyperbolic Geometry: A Comparison Based on Language and Quantifier Type Complexity

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Hyperbolic geometry can be axiomatized using the notions of order andcongruence (as in Euclidean geometry) or using the notion of incidencealone (as in projective geometry). Although the incidence-based axiomatizationmay be considered simpler because it uses the single binary point-linerelation of incidence as a primitive notion, we show that it issyntactically more complex. The incidence-based formulation requires some axioms of the quantifier-type \forall\exists\forall, while the axiom system based on congruence and order can beformulated using only \forall\exists-axioms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Chang, C. C.: 1959, ‘On Unions of Chains of Models’, Proc. Amer. Math. Soc. 10 120–127.

    Google Scholar 

  • Chang, C. C. and H. J. Keisler: 1990, Model Theory, North-Holland, Amsterdam.

    Google Scholar 

  • Frenkian, A.: 1940, Le postulat chez Euclide et chez les modernes, Librairie Philosophique J. Vrin, Paris.

    Google Scholar 

  • Hilbert, D.: 1999, Grundlagen der Geometrie, Vol. 14, B. G. Teubner, Auflage (1st edn 1899).

    Google Scholar 

  • Hodges, W.: 1993, Model Theory. Cambridge University Press, Cambridge.

    Google Scholar 

  • Keisler, H. J.: 1960, ‘Theory of Models with Generalized Atomic Formulas’, J. Symb. Logic 25, 1–26.

    Google Scholar 

  • Knorr, W. R.: 1983, ‘Construction as Existence Proof in Ancient Geometry’, Ancient Philos. 3, 125–148.

    Google Scholar 

  • Knorr, W. R.: 1986, The Ancient Tradition of Geometric Problems, Birkhäuser, Boston, (Dover, New York, 1993).

    Google Scholar 

  • Kordos, M. and L. W. Szczerba: 1969, ‘On the ∏∑-Axiom Systems of Hyperbolic and Some Related Geometries’, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 17, 175–180.

    Google Scholar 

  • Lombard, M. and R. Vesley: 1998, ‘A Common Axiom Set for Classical and Intuitionistic Plane Geometry’, Ann. Pure Appl. Logic 95, 229–255.

    Google Scholar 

  • Łoś, J. and R. Suzzko: 1997, ‘On the Extending of Models. IV’, Fund. Math. 44: 52–60.

    Google Scholar 

  • Mäenpää, P.: 1997, ‘From Backward Reduction to Configurational Analysis’, in M. Otte and M. Panza (eds), Analysis and Synthesis in Mathematics, Boston Stud. Philos. Sci., 196, Kluwer, Dordrecht, pp. 201–226.

    Google Scholar 

  • Menger, K.: 1971, ‘The New Foundation of Hyperbolic Geometry’, in A Spectrum of Mathematics (Essays presented to H. G. Forder), Auckland University Press, Auckland, pp. 86–97.

    Google Scholar 

  • Moler, N. and P. Suppes, P.: 1968, 'Quantifier-Free Axioms for Constructive Plane Geometry, Compositio Math. 20, 143–152.

    Google Scholar 

  • Niebel, E.: 1959, Untersuchungen über die Bedeutung der geometrischen Konstruktion in der Antike, Kant-Studien, Ergänzungsheft 76, Kölner-Universitäts-Verlag.

  • Pambuccian, V.: 2001, ‘Constructive Axiomatizations of Plane Absolute, Euclidean and Hyperbolic Geometry’, Math. Log. Q. 47, 129–135.

    Google Scholar 

  • Pambuccian, V.: 2001, ‘Fragments of Euclidean and Hyperbolic Geometry’, Sci. Math. Jpn. 53, 361–400.

    Google Scholar 

  • Pambuccian, V.: 2002, ‘Sphere Tangency as Single Primitive Notion for Hyperbolic and Euclidean Geometry’, submitted.

  • Poincaré, H.: 1903, La science et l'hypothèse, Flammarion, Paris.

    Google Scholar 

  • Proclus:1970, A Commentary on the First Book of Euclid's Elements,(trans.G.R. Morrow), Princeton University Press, Princeton.

  • Schwabhäuser, W.: 1959, ‘Entscheidbarkeit und Vollständigkeit der elementaren hyperbol-ischen Geometrie’, Z. Math. Logik Grundlagen Math. 5, 132–205.

    Google Scholar 

  • Schwabhäuser, W., W. Szmielew, and A. Tarski: 1983, Metamathematische Methoden in der Geometrie, Springer-Verlag, Berlin.

    Google Scholar 

  • Skala, H.: 1992, ‘Projective-Type Axioms for the Hyperbolic Plane’, Geom. Dedicata 44, 255–272.

    Google Scholar 

  • Szmielew, W.: 1959, ‘Some Metamathematical Problems Concerning Elementary HyperbolicGeometry’,in L. Henkin, P. Suppes, and A. Tarski (eds), The Axiomatic Method, North-Holland, Amsterdam, pp. 30–52.

    Google Scholar 

  • Tarski, A.: 1954, ‘Contributions to the Theory of Models. I, II’, Nederl. Akad. Wetensch. Proc. Ser. A 57 = Indagationes Math. 16, 572–581, 582-588.

    Google Scholar 

  • Tarski, A.: 1959, ‘What is Elementary Geometry?’, in L. Henkin, P. Suppes, and A. Tarski (eds), The Axiomatic Method, North-Holland, Amsterdam, pp. 16–29.

    Google Scholar 

  • Tarski, A. and Givant, S.: 1999, ‘Tarski's System of Geometry’, Bull. Symbolic Logic 5, 175–214.

    Google Scholar 

  • van der Waerden, B. L.: 1977/1978, ‘Die Postulate und Konstruktionen in der frühgriechischen Geometrie’, Arch. Hist. Exact Sci. 18, 343–357.

    Google Scholar 

  • Vesley, R.: 1999, ‘Constructivity in Geometry’, Hist. Philos. Logic 20, 291–294.

    Google Scholar 

  • Zeuthen, H. G.: 1896, ‘Die geometrische Construction als “Existenzbeweis” in der antiken Geometrie’, Math. Ann. 47, 222–228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pambuccian, V. Axiomatizations of Hyperbolic Geometry: A Comparison Based on Language and Quantifier Type Complexity. Synthese 133, 331–341 (2002). https://doi.org/10.1023/A:1021294808742

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021294808742

Keywords

Navigation